Measuring Large-Scale Velocity Fields with the Kinematic SZ Effect

Jack Sayers

November 08, 2018

Future Potential and (Some) Current Results using the Kinematic SZ Effect

Jack Sayers

November 08, 2018

Galaxy Cluster Atmospheres

- Intra-cluster medium \rightarrow 90% of baryons \rightarrow 10⁸ K (few keV)
- Directly emits thermal Bremsstrahlung in X-rays
- Compton scatters CMB photons \rightarrow Sunyaev-Zel'dovich effect Figures taken from Carlstrom+2002

The SZ Effects

- Thermal SZ effect
 - * $\frac{\Delta T_{CMB}}{T_{CMB}} \sim T_e \tau_e$
- Kinematic SZ effect (Doppler shift)
 - * $\frac{\Delta T_{CMB}}{T_{CMB}} \sim v_z \tau_e$
- Relativistic distortions to both
- Can determine τ_e , T_e , and v_z via SZ brightness with 3+ spectral bands

The Kinematic SZ Effect

• The good:

- The SZ effects are a fractional distortion of the CMB \rightarrow brightness is redshift independent
- Proportional to density \rightarrow (comparatively) easier to study low density outskirt regions compared to X-rays
- Measures v_z relative to CMB reference frame \rightarrow absolute velocity measurements
- The bad:
 - Signal is dim, and $\sim \times 10$ dimmer than thermal SZ effect \rightarrow difficult to detect and requires precise calibration
 - Many contaminating signals \rightarrow spectrally degenerate with primary CMB anisotropies, much dimmer than thermal SZ effect and thermal dust emission from background galaxies (CIB)

Large-Scale Velocities with kSZ

- Can average away contaminating signals by differencing total SZ signal from nearby pairs of objects
- Combine CMB survey data with external catalog (SPT/DES, ACT/BOSS, Planck/SDSS)
- On average, CMB, CIB, and thermal SZ will be the same in both objects, motion towards each other produces kinematic SZ with opposite signs

Pairwise kSZ (Das)

Pairwise kSZ Measurements

 Modest significance detections using existing data (SPT w/ DES cluster catalog, ACT w/ BOSS galaxy catalog, Planck w/ SDSS galaxy catalog)

SPT/DES results from Soergel+2016, ACT/BOSS results from de Bernardis+2017

Cosmological Constraints from Pairwise kSZ

- Velocity field measurements are excellent for constraining dark energy and modified gravity
- DETF FOM ~200 for CMB-S4

 → in the ballpark of other Stage
 IV surveys like MS-DESI (~700)
 and LSST (~800) → combined
 analysis can be powerful for
 breaking degeneracies

Adapted from Mueller+2015

• Modified gravity $\rightarrow \sigma(\gamma) \sim 0.03$ for Stage III CMB and ~ 0.01 for CMB-S4 \rightarrow similar to projections for MS-DESI, LSST, WFIRST, Euclid

What About Individual kSZ Detections?

- Pairwise kSZ has some downsides \rightarrow actually measure $v_z \times \tau_e$, so you need an estimate of $\tau_e \rightarrow$ also lose absolute v_z
- Individual kSZ detections would allow for direct absolute v_z measurements, but would require excellent signal separation \rightarrow tSZ, CIB and primary CMB (at low-z)
- Probably not possible to the desired sensitivity from 5–10 m CMB survey telescopes, mainly due to CIB
- Need high angular resolution (large aperture) survey telescope with spectral coverage between 90–400 GHz

What About Individual kSZ Detections?

- As a straw-person example, consider the nominal design for the 30 m Chajnantor Sub/millimeter Survey Telescope (CSST)
- Large FOV with 6 photometric channels at 90–405 GHz
- 30k clusters with $\sigma_v \sim$ 200 km/s

Inexpensive 30 m Telescope (Padin 2014)

- Would provide constraints on dark energy and modified gravity similar to CMB-S4 (and also MS-DESI, LSST, etc.)
- High mass clusters \rightarrow internal ICM motions at $15^{\prime\prime}$ resolution

Kinematic SZ Measurements

Jack Sayers

Current Status of Individual kSZ Detections?

- No detections to date of single cluster bulk velocity
- Best to date is ACT/LABOCA study of 11 clusters with percluster $\sigma_v \sim 1000-2000$ km/s (Lindner+2015)
- Two independent detections of velocity substructure in MACS J0717.5 \rightarrow merging sub-cluster with $v_z \sim$ 3000 km/s

NIKA kSZ map of the exceptional merger velocities in MACS J0717.5 $(z=0.55,\,{\rm Adam}{+}2017)$

Current Status of Individual kSZ Detections?

• We are just finishing a study of 10 clusters using 10-m class data from Bolocam, AzTEC, *Herschel*-SPIRE, *Planck*, *Chandra*, and $HST \rightarrow$ bulk velocities and internal motions

Why So Many Datasets?

- kSZ fit based on 140/270 GHz Bolocam and AzTEC data
- Chandra used to constrain T_e
- Planck used to constrain large angular scale SZ signal

• *Herschel*-SPIRE used to detect/subtract CIB sources

Dusty Galaxies at 270 GHz

- 270 GHz images limited by variations in background CIB
 - brightest object usually
 a background galaxy,
 not SZ cluster
- Detect 10s of galaxies at 270 GHz plus ${\sim}100$ more with SPIRE

Each cross is a detected galaxy

- Extrapolate SPIRE detections to 270 GHz via greybody fit
 - $S\nu = S_0(1 e^{-(\nu/\nu_0)^{\beta}})B(\nu, T_{dust})$
 - Float T_{dust} , set $\beta = 2.15$ based on empirical calibration

Why Do We Need HST?

- The combination of gravitational lensing and bright source subtraction produces an on-average decrement in CIB
- In our case, decrement is 10–25% of 270 GHz SZ signal

Bulk Velocity Constraints

• With *Chandra* prior on T_e , we measure v_z and τ_e

Bulk Velocity Constraints

- Typical per-cluster $\sigma_v \sim 500-1000 \text{ km/s}$ $\rightarrow \text{ factor of } 2$ improvement relative to ACT/LABOCA
- Ensemble mean $\langle v_z \rangle = 430 \pm 210$ km/s
- Intrinsic scatter M $\sigma_{\rm int} = 470 \pm 340$ km/s \rightarrow simulations

predict \sim 250 km/s

Internal ICM Motions

- Convolve data to a common resolution of 70'' and fit for τ_e and v_z pixel by pixel
- Optical depth τ_e measured with peak S/N of 5–15

Internal ICM Motions

- Typical $\sigma_v \sim 1000 \text{ km/s}$ for each resolution element
- Only significant detection is the known sub-cluster in MACS J0717.5 (and that's only at 3σ)

Bulk Velocity Constraints

- Can compare rms in kSZ map to expectation based on random noise
- Two clusters, Abell 0697 and MACS J0717.5, show a ${\sim}4\sigma$ excess in rms
- LOS mergers (red) all show some excess, corresponds to rms $v_z \sim 1000-2000$ km/s

 Abell 0697

 Abell 1835

 CL J0152.7

 CL J1226.9

 MACS J0018.5

 MACS J0025.4

 MACS J0454.1

 MACS J0717.5

 MACS J1347.5

 MACS J2129.4

Summary

- The kSZ effect promises to be a powerful tool for constraining dark energy and modified gravity → interesting results from pairwise measurements in CMB surveys coming
- Future large-aperture survey telescopes like CSST could provide interesting cosmological constraints from individual kSZ detections \rightarrow also a wealth of information on internal cluster dynamics
- Although the images have modest angular resolution and sensitivity, we have now reached the point of detecting internal cluster motions with the kSZ
- Higher resolution, deeper measurements from IRAM/NIKA2 and LMT/ToITEC will build on these internal motion measurements in the near future