

Cosmic Growth, Gravitational Waves, and CMB

Eric Linder

UC Berkeley/KASI

8th KIAS Workshop on Cosmology

5 November 2018

In just the last couple of years, we have fully recognized close connections:

Implications of c_T = c

3

GW170817 + GRB1070817A: synchronicity of GW and photon arrival within 2 seconds after signal propagation for 130 My (400 x 10¹³ s) limits $c_{\tau}/c - 1 < 10^{-15}$.

Any theory with $c_{\tau} \neq c$ is essentially* ruled out.

Gravitational Wave Distances

Just because c_T=c doesn't mean no effect on GW propagation.

$$\ddot{h} + (2 + \alpha_M)\mathcal{H}\dot{h} + c_T^2 k^2 h = 0$$

GW amplitude is proportional to 1 / distance (energy goes as inverse square)

h ~ 1/D_L^{GW}

So we can measure changes in gravity by comparing the GW distance to the photon luminosity distance to the same object.

Horndeski α_{M} (running of Planck mass) damps h.

Nishizawa 1710.04825 Arai & Nishizawa 1711.03776 Belgacem+ 1712.08108 Amendola+ 1712.08623 Linder 1801.01503 4

Gravitational Wave Distances

Modified gravity α_{M} (running of Planck mass)

$$\alpha_M = \frac{d\ln M_\star^2}{d\ln a}$$

damps h

$$h = h^{GR} e^{-(1/2) \int_{em}^{obs} d\ln a \, \alpha_M(a)} = h^{GR} e^{-(1/2) \int_{em}^{obs} d\ln M_{\star}^2(a)}$$
$$= h^{GR} \left[\frac{M_{\star,em}^2}{M_{\star,obs}^2} \right]^{1/2}$$

So

$$d_{L,GW}(a) = d_L^{GR}(a) \left[\frac{M_{\star}^2(a=1)}{M_{\star}^2(a)}\right]^{1/2}$$

but M_{*} also affects growth, so GW distance tied to growth! Linder 1801.01503

e.g. in No Slip Gravity

$$d_{L,GW}(a) = d_L^{GR}(a) \left[\frac{G_{\text{matter}}(a)}{G_{\text{matter}}(a=1)} \right]^{1/2}$$

1 /0

(also in nonlocal gravity)

Gravitational Waves and Cosmic Growth

GW distance tied to growth!

If we detect, e.g., a suppression in growth, then this can be checked vs GW distances different than GR.

Example: No Slip Gravity (1 free function) fits growth from redshift space distortions, better than GR.

It predicts ~5% deviation in GW distances.

Galaxy surveys have deep complementarity with GW and CMB surveys.

Even with $\alpha_{T}=0$, GW propagation affected by α_{M} .

CMB B-modes and Gravity

No Slip Gravity with $\alpha_{B} = -2\alpha_{M}$.

B-modes modified: GW + Lensing

Lensing power modified: Analytic prediction based on cosmic growth

Brush, Linder, Zumalacárregui 1810.12337

Cosmic Growth and Why Now?

Growth is a battle between gravitational attraction and cosmic acceleration.

Growth index transition

Define growth index by $f = \Omega_m^{\gamma}(a)$

Transitions today from past constant to future asymptote.

f(R) gravity \rightarrow GR

The tensor sector of modified gravity can be probed by interferometers, CMB, and cosmic surveys.

