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FIG. 1. The growth rate f shows steep behavior vs log a.
Growth is suppressed relative to the matter dominated era
(f(a ⌧ 1) = 1) as cosmic acceleration begins near today
(a = 1), and undergoes a sharp transition shutting o↵ growth.
The three solid curves show the behavior for di↵erent values
of the e↵ective dark energy equation of state w. The short
green dotted curves at a � 1 give the asymptotic behavior
f / a(3w�1)/2 for each curve.

accurately described in many cosmologies by a quasi-
constant value for � [5, 6]. For example, for smooth
non-interacting models including ⇤CDM, within GR, the
growth amplitude D(a) is given to within 0.1% of the ex-
act value by using � = 0.55 and the growth rate f(a) to
within 0.3%. Note that next generation data is expected
to constrain these quantities at the percent level, so this
approximation is su�cient as a consistency test of these
models.
However, the constancy of � until today is due to the

relatively recent onset of cosmic acceleration. We find
a very di↵erent behavior for future growth. The growth
index rapidly rises starting near the present, indicating
that the growth rate f is more sensitive to the dimin-
ishing matter density fraction ⌦m(a) and hence dimin-
ishes rapidly. However, � then slowly approaches a new
asymptotic value �1. The approach goes inversely with
the logarithm of the matter density [4],

�(a ! 1) ⇠ 3w � 1

6w
+

c�
ln⌦m(a)

⌘ �1 +
c�

ln⌦m(a)
(6)

Note that since at late times ⌦m(a) ⇡ [⌦m,0/(1 �
⌦m,0)]a3w then ln⌦m(a) ⇡ 3w ln a and �infty is recov-
ered using (5). For example, within general relativity
and ⇤CDM, �1 = 2/3. For arbitrary w we can just take

Model �1 c� s = d ln f1/d ln a cf

w = �1 2/3 0.553 �2 0.989
w = �0.8 0.708 0.772 �1.7 1.19
w = �1.5 0.611 0.309 �2.75 0.811

TABLE I. Values for the constants entering the asymptotic
formulas for the gravitational growth index � and the growth
rate f . While �1 and d ln f1/d ln a can be derived analyti-
cally, the coe�cients c� and cf depend on the entire growth
evolution and are found numerically.

the asymptotic value w1. These results hold for w < 0
but the transition from the past (f = 1) to the future
(f = 0) becomes sharper as w decreases. Figures 1 2,
illustrate these results and Table I summarizes the late
time asymptotic behaviors for three di↵erent values of
the e↵ective dark energy equation of state.

FIG. 2. The gravitational growth index � shows sudden
evolution in the near future, after a predominantly constant
behavior in the past. Although growth freezes in the future,
� asymptotically goes to a new finite constant value because
⌦m ! 0 too. The three solid curves show the behavior for
di↵erent values of w. The green dotted curves at a � 1
give the asymptotic behavior � = �1+c�/[ln⌦m(a)] for each
curve.

Future Growth in Modified Gravity.— We next exam-
ine future growth in modified gravity. Gravity enters
through the source term in the growth equation, as shown
by the factor Geff

G in Eq. (2). With regard to asymp-
totic future growth, note that if the source term involving
Geff
G (a)⌦m(a) ⌧ f then Geff

G will not a↵ect the asymp-
totic behaviors we derived in the previous section, we
still have f1 ⇠ a(3w�1)/2 ! 0. However, the coe�cient
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New Connections 

In just the last couple of years, we have fully 
recognized close connections: 

Cosmic Growth 

Gravitational Waves CMB 

Δ(DGW/DEM) 
çè Δ growth 

Δ growth çè 
Δ CMB lensing 

Δ gravity çè 
Δ CMB lensing 
+ B-modes 
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Implications of cT = c 

Δt 
Light follows null geodesics.  

If GW follows disformal à Δt.  

Only conformal theories survive. 
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1For nonrelativists: 

“Additive” gravity is dead 
“Multiplicative” gravity is ok 

GW170817 + GRB1070817A: synchronicity of GW and photon 
arrival within 2 seconds after signal propagation for 130 My 
(400 x 1013 s) limits cT /c – 1 < 10-15. 

Any theory with cT ≠ c is essentially* ruled out.  
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Gravitational Wave Distances 

Just because cT=c doesn’t mean no effect on GW 
propagation.  

2

scalar-tensor models.
One generically expects that if there is such a confor-

mal coupling of gravity, the model must feature screen-
ing so that precision tests of gravity do not already rule
it out. This screening mechanism would act as to sup-
press the Solar-System value of –

M

, which is essentially
the rate of change per Hubble time of the gravitational
constant, compared to that in the wider cosmology. The
present and local value of |–

M

| can indeed be constrained
to be less than 0.01÷0.03 in the laboratory and in the So-
lar System (see for instance a recent summary of results
and a positive detection in [24]). A cosmological con-
straint from Big-Bang nucleosynthesis (BBN) is also a
stringent one, |G

BBN

/G
0

≠ 1| . 0.2 [25]. The Planck
constraint on the variation of the mass of the electron,
�m

e

/m
e

. 0.01 [26] can, in these gravity theories, be
re-interpreted as the variation of the Planck mass. As
will be shown in the following, the completely indepen-
dent test we propose here can reach similar or even better
sensitivity.

The idea of using GWs to test –
M

and –
T

was put for-
ward for the first time in [27], where it was shown that B-
modes created by primordial GWs in the polarized Cos-
mic Microwave Background (CMB) sky can in principle
constrain both quantities. The Planck’s CMB analysis
[28] produced, for some classes of functional parametriza-
tion of –

M

(t), errors around 0.05 at 95% confidence level
for the present value of –

M

. These errors, however, de-
pend on the assumption of a standard cosmological model
and, in particular, of a �CDM background. Therefore,
these are tests of structure formation for particular mod-
ified gravity models, rather than direct tests of generic
modifications of gravity.

In contrast, we shall emphasise that the method we
propose here is independent of the underlying cosmolog-
ical model and of the precise model of modified gravity.
Another advantage with respect to CMB or BBN con-
straints is that one can in principle map the evolution of
–

M

in an extended redshift range from today to z ¥ 8.

GW PROPAGATION

We consider a flat Friedmann-Robertson-Walker
(FRW) spacetime with scale factor a and conformal Hub-
ble function H. As it has been shown in [2], in such
a cosmological background the GW amplitude h in any
modified gravity theory which does not give gravitons a
mass, obeys the equation

ḧ + (2 + –
M

)Hḣ + c2

T

k2h = 0, (1)

where the dot stands for a derivative with respect to con-
formal time, c

T

is the speed of GWs, and

–
M

= H≠1

d ln M2

ú
dt

(2)

expresses the time variation of the time-dependent e�ec-
tive Planck mass Mú (see [13]). M2

ú is defined as the
normalization of the kinetic term for the metric fluctua-
tions h in the action for perturbations. For example, in
the simple case of a Brans-Dicke gravity with parameter
Ê, one finds –

M

= 1/(1 + Ê).
The GW event reported in Ref. [1] has shown that

c
T

= 1 with extreme precision, at least for the present
Universe. Here we would like to investigate the observ-
able e�ects of –

M

on the GW signal, remembering that,
fixing –

M

, –
T

, as already mentioned, amounts to com-
pletely fixing the non-minimal scalar-tensor interaction.

Let us define the field v © Múah. This quantity obeys
the equation of motion

v̈ + k2v ≠ µ2v = 0, (3)

with tachyonic mass µ of order H, and given by 4µ2 ©
(2+–

M

)2H2+2(2+–
M

)Ḣ+4–̇
M

H. So, provided that the
wavelength of the GW is subhorizon, k ∫ H, v evolves
according to the standard wave equation, v̈+k2v = 0, i.e.
subhorizon GWs in the Jordan frame evolve according to

h = h
a

ei(kx≠Êt) , h
a

aMú = const, (4)

where h
a

is the wave’s amplitude. This result implies
that h

a

is sensitive only to the ratio of the e�ective Planck
mass and scale factors at emission and observation.

In GR, the GW amplitude can be related to the lumi-
nosity distance d

L

of the source from the observer – the
potential evolution of Mú is the only modification here,
so that

h
a

=
3

Mú,em

Mú,obs

4
◊ h

s

, (5)

where h
s

is the standard amplitude expression that, for
merging binaries, can be approximated as (see e.g. equa-
tion (4.189) of [29])

h
s

= 4
d

L

3
GM

c

c2

4
5/3

3
fif

GW

c

4
2/3

, (6)

with M
c

the so-called chirp mass and f
GW

the GW fre-
quency measured by the observer.

The observable signal in the two polarizations h
+

, h◊
is finally obtained by multiplying h by sinusoidal oscilla-
tions and by the factors cos i (for the ◊ polarization) and
the (1+cos2 i)/2 (for the + polarization) that depend on
the inclination i of the binary orbit with respect to the
line of sight.

As a concrete example, in the rest of this paper we
assume for simplicity that –

M

is constant in the region
of observability (i.e. for z Æ 2 roughly). Then we have
that,

Mú ≥ a
–M

2 , (7)

GW amplitude is proportional to 1 / distance    
(energy goes as inverse square)  

  h ~ 1/DL
GW  

So we can measure changes in gravity by 
comparing the GW distance to the photon 
luminosity distance to the same object.  

Horndeski αM (running of Planck mass) damps h.  
Nishizawa 1710.04825        
Arai & Nishizawa 1711.03776 
Belgacem+ 1712.08108 
Amendola+ 1712.08623 
Linder 1801.01503 
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Gravitational Wave Distances 

4

lowing [18, 19] we see that the GW strain amplitude

h = hGRe−(1/2)
∫

obs

em
d ln aαM (a) = hGRe−(1/2)

∫
obs

em
d lnM2

⋆
(a)(24)

= hGR

[

M2
⋆,em

M2
⋆,obs

]1/2

. (25)

Since the strain is inversely proportional to the standard
siren luminosity distance, one has1

dL,GW (a) = dGR
L (a)

[

M2
⋆ (a = 1)

M2
⋆ (a)

]1/2

. (26)

This is a quite general expression for Horndeski gravity
and some other theories. Note in particular that the pho-
ton luminosity distance is simply dGR

L so a comparison of
the GW standard siren distance and the photon standard
candle distance gives a simple test of gravity. Thus one
can in principle measure the evolution of M⋆(a); the run-
ning αM would require a derivative of noisy data. For No
Slip Gravity we have the further simplification that

dL,GW (a) = dGR
L (a)

[

Gmatter(a)

Gmatter(a = 1)

]1/2

, (27)

and one could compare the modified gravity derived from
GW in the tensor sector to that from growth of structure
in the scalar sector.
Returning to growth observables, galaxy redshift sur-

veys already have a slew of measurements of the growth
rate quantity fσ8. Figure 3 compares the predictions
of No Slip Gravity, where we use the exact solution of
growth, with the cosmic expansion fixed to the best fit
Planck cosmology (i.e. flat ΛCDM with Ωm = 0.31), to
a compendium of current observations.
The fits of the two representative models of No Slip

Gravity, employing a motivated functional form for
M2

⋆ (a) and αM (a) respectively, are quite good. Recall
they have the same expansion history as the Planck cos-
mology, and so will fit distance data as well as the concor-
dance, general relativity cosmology. They provide better
fits to the growth rate data coming from redshift space
distortion measurements, however. We find that current
observations are well fit by the M2

⋆ model with µ = 0.1
or the αM model with A = 0.03, both with transition
time at = 0.5 and τ = 1.5.
We can further highlight the deviation from general rel-

ativity by employing the conjoined expansion and growth
history visualization of [26]. Figure 4 illustrates that the
modification of gravity is distinct from a change in the
background cosmological model. Recall that for the No
Slip Gravity models we adopted the Planck cosmology
of flat ΛCDM with Ωm = 0.31, but we see the modified
gravity conjoined growth-expansion history in terms of

1 During the late stages of this work, [20] appeared with an equiv-
alent expression.

FIG. 3. Current measurements of the cosmic structure
growth rate fσ8 are compared with the general relativity pre-
diction for the Planck cosmology (Ωm = 0.31; solid black
curve) and the No Slip Gravity models of M⋆ (dashed blue)
and αM (dot dashed red) functions. The data points come
from 6dFGRS (6; [21]), GAMA (G; [22]), BOSS (B; [23]),
WiggleZ (W; [24]), and VIPERS (V; [25]).

fσ8 vs H does not lie along the general relativity curves.
While one can change the background to match the mod-
ified gravity prediction over a narrow range of redshifts,
the modified gravity model has its own characteristic be-
havior.

Next we consider the leverage of next generation obser-
vations, such as from the Dark Energy Spectroscopic In-
strument (DESI [27]), with percent level measurements of
fσ8 to test gravitation theory. We carry out a Fisher in-
formation analysis following the approach of [28] in test-
ing early modified gravity. The data is taken to be future
measurements of fσ8 in 18 redshift bins over z = 0.05–
1.85 as projected by [27]. Only linear modes are used,
out to kmax = 0.1 h/Mpc. We include a Gaussian prior
on the matter density Ωm of 0.01 to represent external
data such as Planck CMB measurements.

For the gravity model we take the fit parameters as
exhibited in Fig. 3, for the two cases. In each case we fix
at = 0.5 as a reasonable transition time and τ = 1.5 as
the maximum allowed rapidity. Constraints weaken for
early or late transitions, and slow ones, due to param-
eter degeneracies so we present an optimistic scenario
for searching for modifications to gravity. We fit for the
matter density and amplitude of the deviation from gen-
eral relativity, either µ in the M2

⋆ model or A in the αM

model. Both correspond to the maximum deviation over
time of the functions from the general relativity limit.
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fσ8 vs H does not lie along the general relativity curves.
While one can change the background to match the mod-
ified gravity prediction over a narrow range of redshifts,
the modified gravity model has its own characteristic be-
havior.

Next we consider the leverage of next generation obser-
vations, such as from the Dark Energy Spectroscopic In-
strument (DESI [27]), with percent level measurements of
fσ8 to test gravitation theory. We carry out a Fisher in-
formation analysis following the approach of [28] in test-
ing early modified gravity. The data is taken to be future
measurements of fσ8 in 18 redshift bins over z = 0.05–
1.85 as projected by [27]. Only linear modes are used,
out to kmax = 0.1 h/Mpc. We include a Gaussian prior
on the matter density Ωm of 0.01 to represent external
data such as Planck CMB measurements.

For the gravity model we take the fit parameters as
exhibited in Fig. 3, for the two cases. In each case we fix
at = 0.5 as a reasonable transition time and τ = 1.5 as
the maximum allowed rapidity. Constraints weaken for
early or late transitions, and slow ones, due to param-
eter degeneracies so we present an optimistic scenario
for searching for modifications to gravity. We fit for the
matter density and amplitude of the deviation from gen-
eral relativity, either µ in the M2

⋆ model or A in the αM

model. Both correspond to the maximum deviation over
time of the functions from the general relativity limit.

Modified gravity αM (running of Planck mass) 

h = hGRe�(1/2)
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So 

but M* also affects growth, so GW distance tied to growth! 
Linder 1801.01503 

e.g. in No Slip Gravity 

(also in nonlocal gravity) 
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Gravitational Waves and Cosmic Growth 

GW distance tied to growth! 

If we detect, e.g., a suppression in growth, then this 
can be checked vs GW distances different than GR. 4

lowing [18, 19] we see that the GW strain amplitude
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ativity by employing the conjoined expansion and growth
history visualization of [26]. Figure 4 illustrates that the
modification of gravity is distinct from a change in the
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of flat ΛCDM with Ωm = 0.31, but we see the modified
gravity conjoined growth-expansion history in terms of
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FIG. 3. Current measurements of the cosmic structure
growth rate fσ8 are compared with the general relativity pre-
diction for the Planck cosmology (Ωm = 0.31; solid black
curve) and the No Slip Gravity models of M⋆ (dashed blue)
and αM (dot dashed red) functions. The data points come
from 6dFGRS (6; [21]), GAMA (G; [22]), BOSS (B; [23]),
WiggleZ (W; [24]), and VIPERS (V; [25]).

fσ8 vs H does not lie along the general relativity curves.
While one can change the background to match the mod-
ified gravity prediction over a narrow range of redshifts,
the modified gravity model has its own characteristic be-
havior.

Next we consider the leverage of next generation obser-
vations, such as from the Dark Energy Spectroscopic In-
strument (DESI [27]), with percent level measurements of
fσ8 to test gravitation theory. We carry out a Fisher in-
formation analysis following the approach of [28] in test-
ing early modified gravity. The data is taken to be future
measurements of fσ8 in 18 redshift bins over z = 0.05–
1.85 as projected by [27]. Only linear modes are used,
out to kmax = 0.1 h/Mpc. We include a Gaussian prior
on the matter density Ωm of 0.01 to represent external
data such as Planck CMB measurements.

For the gravity model we take the fit parameters as
exhibited in Fig. 3, for the two cases. In each case we fix
at = 0.5 as a reasonable transition time and τ = 1.5 as
the maximum allowed rapidity. Constraints weaken for
early or late transitions, and slow ones, due to param-
eter degeneracies so we present an optimistic scenario
for searching for modifications to gravity. We fit for the
matter density and amplitude of the deviation from gen-
eral relativity, either µ in the M2

⋆ model or A in the αM

model. Both correspond to the maximum deviation over
time of the functions from the general relativity limit.

Example:  No Slip Gravity 
(1 free function) fits growth 
from redshift space 
distortions, better than GR.   

It predicts ~5% deviation in 
GW distances. 

Galaxy surveys have deep complementarity 
with GW and CMB surveys.  
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CMB B-modes and Gravity 

Effective field theory approach to modified gravity 
defines property functions αB, αK, αM, αT. We know* 
αT=0, and αK is only important on horizon scales. 

Even with αT=0, GW propagation affected by αM.  

5

FIG. 3. Regions of stability (levels of green) and gradient
instability (red) plotted in the αB,0 and αM,0 plane for s = 1.3
(dark green), s = 1.5 (green) and s = 1.7 (light green). Black
solid line corresponds to f(R) theories (αB = −αM ), blue
dotted line corresponds to No Slip Gravity (αB = −2αM ).

FIG. 4. The primordial B-mode spectrum calculated using
the property function parametrization of Horndeski models
within the hi_class, with time dependence a1, for five val-
ues of αM,0 = 1, 2, 3, 4, 5, and αB,0 = 1 or −3, αK,0 = 0.001.
The inset zooms in on the low multipoles, showing that only
αM matters. The tensor-to-scalar ratio r = 0.01 and all spec-
tra include the effects of gravitational lensing. The ΛCDM
primordial spectrum is given by the solid black curve.

This then becomes

αM,0

[

(2s− 3)Ωma−3 + 2s(1− Ωm)
]

≤ 0 , (5)

where we ignore radiation. We can readily define three
cases:

N1. s > 3/2: Stable for αM,0 < 0.

N2. s < 3Ωm/2: Stable for αM,0 > 0.

N3. 3Ωm/2 < s < 3/2: Unstable at some point in a =
[0, 1].

This agrees with the dotted line in Fig. 2 representing the
No Slip Gravity condition αB = −2αM (note αM,0 = 0
is just general relativity).
For f(R) gravity the stability condition in the power

law αM (a) model reads

αM,0

[

1− s+
αM,0as

2
+

3

2

Ωma−3

Ωma−3 + 1− Ωm

]

≥ 0 . (6)

This gives four cases:

F1. s > 5/2: Stable for αM,0 < 0.

F2. 0 < s < 1 + 3Ωm/2: Stable for αM,0 > 0.

F3. 1 + 3Ωm/2 < s < 5/2: Necessary but not sufficient
condition for stability is αM,0 > 2[s−(1+3Ωm/2)].

F4. s = 0: Stable for αM,0 > 0 and αM,0 < −5.

This agrees with the solid line in Fig. 2 representing the
f(R) gravity condition αB = −αM . (Note that s = 2
requires αM,0 > 1.11; the exact stability condition for
case F3. is analytic but messy, so we only show the sim-
pler necessary condition.) For s = 0 we see islands of
stability appear that are disconnected from each other.
This is an interesting property that we revisit in the
next section when considering implicitly stable numer-
ical parametrizations.
There is physical motivation for these two theories,

while there is not in general for ones with arbitrary
αB = −rαM . However, we can use such a relation to
show that:

R1. s > 3/2: Stable for αM,0 > 0 when r < 4/(2s− 1),
for αM,0 < 0 when 4/(2s− 1) < r < 2.

R2. s < 3/2: Stable for αM,0 > 0 when r < 2/(1 + s−
3Ωm/2), unstable for αM,0 < 0.

R3. r < 0: Unstable.

It is interesting to note that αB = −2αM , i.e. No Slip
Gravity, is a bounding model in the first case above.
For the two physical theories we now consider the forms

of the sound speed cs that these stable solutions repre-
sent. Figure 5 and Figure 6 show cs(a) for various stable
power law forms of No Slip Gravity, for αM,0 > 0 and

Low l bump is 
primordial GW. Clear 
impact of (only) αM. 

High l bump is lensing. 
Matter growth 
suppression by αM, αB. 

hi_class with αi=αi,0a1  

Denissenya & Linder 1808.00013 
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CMB B-modes and Gravity 

No Slip Gravity with αB= -2αM.  

Brush, Linder, Zumalacárregui 1810.12337 

B-modes modified: 
GW + Lensing 

Lensing power modified: 
Analytic prediction 
based on cosmic growth 
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Cosmic Growth and Why Now? 

Growth is a battle between gravitational attraction 
and cosmic acceleration.  

2

FIG. 1. The growth rate f shows steep behavior vs log a.
Growth is suppressed relative to the matter dominated era
(f(a ⌧ 1) = 1) as cosmic acceleration begins near today
(a = 1), and undergoes a sharp transition shutting o↵ growth.
The three solid curves show the behavior for di↵erent values
of the e↵ective dark energy equation of state w. The short
green dotted curves at a � 1 give the asymptotic behavior
f / a(3w�1)/2 for each curve.

accurately described in many cosmologies by a quasi-
constant value for � [5, 6]. For example, for smooth
non-interacting models including ⇤CDM, within GR, the
growth amplitude D(a) is given to within 0.1% of the ex-
act value by using � = 0.55 and the growth rate f(a) to
within 0.3%. Note that next generation data is expected
to constrain these quantities at the percent level, so this
approximation is su�cient as a consistency test of these
models.

However, the constancy of � until today is due to the
relatively recent onset of cosmic acceleration. We find
a very di↵erent behavior for future growth. The growth
index rapidly rises starting near the present, indicating
that the growth rate f is more sensitive to the dimin-
ishing matter density fraction ⌦m(a) and hence dimin-
ishes rapidly. However, � then slowly approaches a new
asymptotic value �1. The approach goes inversely with
the logarithm of the matter density [4],

�(a ! 1) ⇠ 3w � 1

6w
+

c�
ln⌦m(a)

⌘ �1 +
c�

ln⌦m(a)
(6)

Note that since at late times ⌦m(a) ⇡ [⌦m,0/(1 �
⌦m,0)]a3w then ln⌦m(a) ⇡ 3w ln a and �infty is recov-
ered using (5). For example, within general relativity
and ⇤CDM, �1 = 2/3. For arbitrary w we can just take

Model �1 c� s = d ln f1/d ln a cf

w = �1 2/3 0.553 �2 0.989
w = �0.8 0.708 0.772 �1.7 1.19
w = �1.5 0.611 0.309 �2.75 0.811

TABLE I. Values for the constants entering the asymptotic
formulas for the gravitational growth index � and the growth
rate f . While �1 and d ln f1/d ln a can be derived analyti-
cally, the coe�cients c� and cf depend on the entire growth
evolution and are found numerically.

the asymptotic value w1. These results hold for w < 0
but the transition from the past (f = 1) to the future
(f = 0) becomes sharper as w decreases. Figures 1 2,
illustrate these results and Table I summarizes the late
time asymptotic behaviors for three di↵erent values of
the e↵ective dark energy equation of state.

FIG. 2. The gravitational growth index � shows sudden
evolution in the near future, after a predominantly constant
behavior in the past. Although growth freezes in the future,
� asymptotically goes to a new finite constant value because
⌦m ! 0 too. The three solid curves show the behavior for
di↵erent values of w. The green dotted curves at a � 1
give the asymptotic behavior � = �1+c�/[ln⌦m(a)] for each
curve.

Future Growth in Modified Gravity.— We next exam-
ine future growth in modified gravity. Gravity enters
through the source term in the growth equation, as shown
by the factor Geff

G in Eq. (2). With regard to asymp-
totic future growth, note that if the source term involving
Geff
G (a)⌦m(a) ⌧ f then Geff

G will not a↵ect the asymp-
totic behaviors we derived in the previous section, we
still have f1 ⇠ a(3w�1)/2 ! 0. However, the coe�cient

Gravity loses – 
growth ends. 

 

Falls from 1 to 0 in 
2 efolds, with today 
in middle. 

Linder & Polarski 1810.10547 

f =
d lnD

d ln a

1
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Growth index transition 

Define growth index by  
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The growth of large scale structure is a battle between gravitational attraction and cosmic accel-
eration. We investigate the future behavior of cosmic growth under both general relativity (GR) and
modified gravity during prolonged acceleration, deriving analytic asymptotic behaviors and showing
that gravity generally loses and growth ends. We also note the “why now” problem is particularly
striking when viewed in terms of the shut down of growth. Interestingly, the gravitational growth
index � also shows today as a unique time between constant behavior in the past and a di↵erent
constant asymptote in the future.

Introduction.— The growth of cosmic structure is what
allows us to exist, taking initial seeds of density inhomo-
geneity from quantum fluctuations in inflation and under
gravitational instability forming the massive structures
of galaxies and clusters of galaxies. Yet we also live in a
presently accelerating universe, and this is already shut-
ting down cosmic growth.

We explore the future consequences of the battle be-
tween gravitational attraction (possibly even stronger
than in GR) and the accelerating expansion, whether
due to dark energy or modified gravity. Our focus is
on the future and we derive the conditions for the end
of cosmic growth, in terms of the growth rate and the
gravitational growth index. While [3] explored possible
values of � today and in the recent past as well as their
model and scale dependence, [4] addressed also the fu-
ture asymptotic behaviour �1 however only inside GR.
Actually, essentially all papers focused on � today or in
the near past. A density perturbation � ⌘ �⇢/⇢ evolves
with scale factor a according to its growth factor D(a)
as �(a)/�(ai) = D(a)/D(ai). The cosmic growth rate
(function)

f ⌘ d lnD

d ln a
, (1)

is especially useful to characterize its slow down, and f
evolves in many models according to

f 0+f2+


2 +

1

2

d lnH2

d ln a

�
f� 3

2

Ge↵

G
(a, k)⌦m(a) = 0 , (2)

where a prime denotes the derivative with respect to the
natural log of the expansion factor, d/d ln a, H is the
Hubble expansion rate, ⌦m(a) is the matter density as
a fraction of the critical density as it is defined in GR,
and Geff

G (a, k) is the e↵ective time and scale dependent
gravitational strength in modified gravity, di↵erent from
Newton’s constant G, its value in GR. We can write the
growth rate as [1],

f = ⌦�
m(a) , (3)

which defines the growth index � introduced in [1] and
later studied for various cosmologies in [2].
Future Growth in General Relativity.— This section

takes gravity to be described by general relativity (GR),
where Geff

G = G. One can write a closed form solution [5]

f(a) = (a4H)�1

Z a

0

da0

a0
(a0)4H(a0) (4)

⇥

3

2
G⌦m(a0) + 2f(a0)� f2(a0)

�
,

and take appropriate limits, e.g. in the future dark energy
(DE) dominates and H ⇠ a�3(1+w)/2, where w is the DE
equation of state parameter (w⇤ = �1), and growth dies
so f ⌧ 1. However, the di↵erential equation Eq. (2) is
as easy to work with.
Cosmic acceleration enters through the Hubble friction

term and the diminished source term ⌦m(a). It has a
rather dramatic impact on the growth rate. We see in
Fig. 1 that f plunges from 90% of its matter dominated
value (f = 1) to 10% in less than 2 e-folds of expansion.
The present value is close to the middle of this sharp
cuto↵ (f⇤CDM ⇡ 0.5 for the present value of the matter
density fraction ⌦m,0 ⇡ 0.3). One can view this as a
version of the coincidence or “why now” problem. This
reflects in the departure of � starting around the present
time from a quasi-constant behaviour in the future [4].
We can analytically derive the late time asymptotic

behavior of the suppression as

f ⇠ cf a
(3w�1)/2 . (5)

As the growth rate goes to zero, the density perturbation
freezes, D ! D1 and cosmic growth ends.
Within general relativity, the expansion history fully

determines the growth history (in the linear regime, with
negligible perturbations in components other than mat-
ter, and given the initial conditions). To form a test
of general relativity, [6] separated out the e↵ects on the
growth of the cosmic expansion from the gravitational
coupling strength using the growth index �. For ob-
servational data (i.e. at a  1) cosmic growth can be

2

FIG. 1. The growth rate f shows steep behavior vs log a.
Growth is suppressed relative to the matter dominated era
(f(a ⌧ 1) = 1) as cosmic acceleration begins near today
(a = 1), and undergoes a sharp transition shutting o↵ growth.
The three solid curves show the behavior for di↵erent values
of the e↵ective dark energy equation of state w. The short
green dotted curves at a � 1 give the asymptotic behavior
f / a(3w�1)/2 for each curve.

accurately described in many cosmologies by a quasi-
constant value for � [5, 6]. For example, for smooth
non-interacting models including ⇤CDM, within GR, the
growth amplitude D(a) is given to within 0.1% of the ex-
act value by using � = 0.55 and the growth rate f(a) to
within 0.3%. Note that next generation data is expected
to constrain these quantities at the percent level, so this
approximation is su�cient as a consistency test of these
models.

However, the constancy of � until today is due to the
relatively recent onset of cosmic acceleration. We find
a very di↵erent behavior for future growth. The growth
index rapidly rises starting near the present, indicating
that the growth rate f is more sensitive to the dimin-
ishing matter density fraction ⌦m(a) and hence dimin-
ishes rapidly. However, � then slowly approaches a new
asymptotic value �1. The approach goes inversely with
the logarithm of the matter density [4],

�(a ! 1) ⇠ 3w � 1

6w
+

c�
ln⌦m(a)

⌘ �1 +
c�

ln⌦m(a)
(6)

Note that since at late times ⌦m(a) ⇡ [⌦m,0/(1 �
⌦m,0)]a3w then ln⌦m(a) ⇡ 3w ln a and �infty is recov-
ered using (5). For example, within general relativity
and ⇤CDM, �1 = 2/3. For arbitrary w we can just take

Model �1 c� s = d ln f1/d ln a cf

w = �1 2/3 0.553 �2 0.989
w = �0.8 0.708 0.772 �1.7 1.19
w = �1.5 0.611 0.309 �2.75 0.811

TABLE I. Values for the constants entering the asymptotic
formulas for the gravitational growth index � and the growth
rate f . While �1 and d ln f1/d ln a can be derived analyti-
cally, the coe�cients c� and cf depend on the entire growth
evolution and are found numerically.

the asymptotic value w1. These results hold for w < 0
but the transition from the past (f = 1) to the future
(f = 0) becomes sharper as w decreases. Figures 1 2,
illustrate these results and Table I summarizes the late
time asymptotic behaviors for three di↵erent values of
the e↵ective dark energy equation of state.

FIG. 2. The gravitational growth index � shows sudden
evolution in the near future, after a predominantly constant
behavior in the past. Although growth freezes in the future,
� asymptotically goes to a new finite constant value because
⌦m ! 0 too. The three solid curves show the behavior for
di↵erent values of w. The green dotted curves at a � 1
give the asymptotic behavior � = �1+c�/[ln⌦m(a)] for each
curve.

Future Growth in Modified Gravity.— We next exam-
ine future growth in modified gravity. Gravity enters
through the source term in the growth equation, as shown
by the factor Geff

G in Eq. (2). With regard to asymp-
totic future growth, note that if the source term involving
Geff
G (a)⌦m(a) ⌧ f then Geff

G will not a↵ect the asymp-
totic behaviors we derived in the previous section, we
still have f1 ⇠ a(3w�1)/2 ! 0. However, the coe�cient

Transitions today 
from past 
constant to future 
asymptote. 



11 11 

f(R) gravity à GR 5

FIG. 5. f(R) gravity gives scale dependent growth, but its
asymptotic future behavior is similar to that of general rela-
tivity (GR) and the scale dependence vanishes as k/(aM) ! 0
for large a. Curves are labeled with k0, the density mode
wavenumber today. Near the present, growth is enhanced,
with � ⇡ 0.42 and a larger growth rate f than GR.
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Today is the maximal 
deviation of Geff in f(R). 

Do surveys today, not an 
e-fold from now!  
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Summary 
The tensor sector of modified gravity can be probed 
by interferometers, CMB, and cosmic surveys.  

Cosmic Growth 

Gravitational Waves CMB 

Δ(DGW/DEM) 
çè Δ growth 

Δ growth çè 
Δ CMB lensing 

Δ gravity çè 
Δ CMB lensing 
+ B-modes 


