Study of High-redshift Galaxies Clusters in CFHTLS W2 Field: Preliminary Results

Insu Paek¹², Myungshin Im¹², Jae-Woo Kim³, IMS team¹²

¹Center for the Exploration of the Origin of the Universe,

²Astronomy Program, Department of Physics & Astronomy, Seoul National University,

³Korea Astronomy and Space Science Institute

Galaxy Clusters

- Most massive gravitationally bound structures
- Part of Large Scale Structures
- Grew from fluctuation in early universe
- Indicator of Dark Matter Haloes
- Constrain Cosmological Parameters

Bond, Kofman & Pogosyan 1996 Allen, Evrard & Mantz 2011 Williamson et al, 2011

Credit: ESA/Hubble/NASA

Galaxy Clusters at z~1.0

- Cosmic Star Formation peaks at z~1.9 (Madau & Dickinson, 2014)
 In local universe, galaxies in dense environment: z~0.15 more early-type galaxies redder, low SFR
- This trend diminished beyond z~l

CFHTLS Wide 2 Field

- Wide field 2 (5 deg × 5 deg) centered at 08:57:49,-03:19:00
- Canada-France-Hawaii Telescope Legacy St MegaCam (u*, g', r', i', z')
- Infrared Medium-Deep Survey
 United Kingdom Infrared Telescope Wide Field Camera (Y,J
- At z~1; approx. 8kpc per arcsec
- Supercluster size ~100 Mpc

(Tully et al. 2014)

Mapping Overdensities

• Using the photometric redshift (Z_{phot}) data, the galactic sources were organized into redshift bins of 0.05 interval from $z \sim 0.6$ to $z \sim 1.4$.

• Each bin covered
$$\frac{|Z_{phot} - Z_{bin}|}{1 + Z_{bin}} < 0.05$$

Mapping Overdensities

- Each extended source in the bin was weighted by $w = \int_{z-0.05(1+z)}^{z+0.05(1+z)} pdf(z)dz$
- Integrate w within 1 Mpc
- Mark the ones with weight higher than 3 σ

Cluster Candidates

