The 8th KIAS Workshop on Cosmology and Structure Formation

Nov. 8, 2018

The formation of dwarf galaxies from high-z to the local Universe

Myoungwon Jeon

Kyung Hee University

Collaborators: Volker Bromm (UT Austin),
Gurtina Besla (U. of Arizona)

Dwarf galaxies: basic building blocks

What physical processes shape star formation (SF) in dwarfs?

- SF efficiency
- stellar feedback
- reionization
- environmental effects

How small is a small galaxy?

Bright Dwarfs:

 $M_{*}^{\sim} 10^{7-9} M_{\odot}$

- The faint galaxy completeness limit for field galaxy surveys.

Classical Dwarfs:

 $M_* \sim 10^{5-7} M_{\odot}$

- The faintest galaxies known prior to SDSS.

Ultra-faint Dwarfs:

 $M_* \sim 10^{2-5} M_{\odot}$

Detected within limited
 volumes around M31 and the
 Milky Way.

Bullock & Boylan-Kolchin (2017)

UFDs: the most metal-poor and least massive galaxies

Metal-poor ([Fe/H]<-2), low stellar mass (M_{star} <10 $^{5}M_{\odot}$), old ages (> 10 Gyr), large M/L ratios (M/L > 100).

Dwarf galaxies as a time machine

Stellar Archaeology

Ultra faint dwarf galaxies (UFDs) from > 70% of stars at high-z.

Weisz et al. 2017

Fossil galaxies

Key Questions

- (1) Which physical processes played an important role in determining SFH in UFDs?
- (2) Can we understand/reproduce the <u>chemical</u> abundances observed UFDs.

From first stars to local dwarfs

First stars (Pop III stars, >100 M_☉)

at z>15, primordial gas in minihaloes ($M_{vir} = 10^{5-6} M_{\odot}$)

Second gen. of stars (Pop II stars, $\sim 1 M_{\odot}$)

Pop II stars could contain chemical signatures of Pop III stars. Low-mass Pop II stars survive until today – we observe those.

First galaxies

at $z\sim15$, $M_{vir} < 10^{8-9} M_{\odot}$ (JWST, GMT)

No or a little additional star formation <u>Dwarf galaxies could preserve chemical</u> <u>signatures of early stars.</u>

First stars & Galaxies (t_H ~ a few 100 Myr)

Reionization $(t_H \sim 1 \text{ Gyr})$

Today z=0

Simulated Dwarfs

Characteristics of the simulated UFD analogs at z=0.

Halo Unit	$M_{ m vir} \ [10^9M_{\odot}]$	$r_{ m v}$ [kpc]	M_* $[10^4M_\odot]$	$D_{ m h}$ [Mpc]	$f_{ m b} \ [\%]$	$r_{1/2}^*$ [pc]	[Fe/H] -	$[lphaar{ ext{Fe}}]$ -	σ_* [kms ⁻¹]	SF _{trun}
halo1	1.53	23.7	4.3	0.6	0.08	345	-2.63	0.52	6.4	Yes
halo2	1.53	23.5	3.8	2.0	0.07	320	-2.25	0.44	6.0	Yes
halo3	1.60	23.9	8.2	2.1	0.1	296	-2.28	0.52	6.7	Yes
halo4	2.21	26.6	13.0	1.9	0.96	513	-2.45	0.54	11.2	No
halo5	3.15	29.9	20.0	0.9	0.05	479	-2.27	0.53	9.9	No
halo6	3.95	32.1	88.6	3.7	0.1	438	-1.23	0.47	11.6	No

(Jeon et al. 2017)

Simulation detail

- Gadget-3
- Resolution: 500 M_☉ (gas), ~2000 M_☉ (DM)

Star formation :

- Schmidt law
- Density threshold of $n_H = 100 \text{ cm}^{-3}$, critical metallicity $Z_{crit} = 10^{-5.5} Z_{\odot}$ (PopII/I)
- Pop III: top-heavy IMF, [10, 100] M_{\odot}
- Pop II/I: Chabrier IMF, [0.1, 100] M_☉
- SNe feedback: thermal energy
- Non-equilibrium cooling, UV photoheating (Haardt & Madau 2011), reionization (z=7-6), self-shielding of the dense gas
- SNe yield: C, O, Mg, Ne, Si, Iron (Wiersma et al. 2009)
 PopIII Pair-instability SNe (PISNe): Heger & Woosely (2002)

PopIII Core-collapse SNe (CCSNe): Heger & Woosely (2010)

PopII: Marigo (2001), Portinari (1998), Thielemann et al. 2003)

Metal mixing: diffusion method, diffusion coefficient D~ rho x velocity x l
 (Greif et al. 2009)

Truncated star formation haloes by reionization

Quenching of SF by reionization and SNe in low-mass galaxies ($M_h < 2x10^9 M_{\odot}$) Continuous SF in galaxies ($M_h > 3-4 \times 10^9 M_{\odot}$, $M_{Hl}^{\sim}10^5 M_{\odot}$; Leo P, Leo T)

Stellar abundances: signatures of PopIII

Jeon et al. 2017

- <u>CEMPs Pop III Sne</u>
- <u>Carbon-normal self-enrichment via Pop II</u> SNe.
- Alpha-elements are enhanced, meaning that they were mainly enriched by Type II SNe from PopIII and PopII stars.

Stellar abundances (Halo5: M_{star}=2x10⁵ M_☉)

6.91

10.25

13.60

0.21

3.56

Neutral gas in dwarfs

Jeon et al. 2018 (submitted)

- Gas-rich dwarf
- $M_{HI}^{\sim}10^5 M_{\odot}$ (similar to field dwarfs Leo P, Leo T.)

Damped Lyman alpha system (DLAs)

Gas with neutral hydrogen number density of N_{HI}~10^{20.3} cm⁻²

Metal-poor DLAs as another probe of first stars

neutral gas enriched by Pop III stars

 $[Fe/H] \sim -3 \text{ at z} = 3$, $N_{HI} \sim 10^{21} \text{ cm}^{-2}$ (Cooke et al. 2017)

Q: Is the gas associated with dwarf galaxies?

Q: Is it the gas that could contain the signatures of Pop III?

Can do dwarfs contain Pop III DLAs?

Extremely metal poor DLA ([Fe/H] ~ -3 at z=3, N_{HI}~10²¹ cm⁻²) is hard explain in the context of dwarf galaxies.

- Pop III DLA could exist at high-z (z > 7), not z=3.
- Rather metal-poor DLAs are likely to be located at the outskirts of massive galaxies.

Jeon et al. submitted (2018)

We are entering an interesting era where we can fill the gap and will get the full picture of the cosmic history!

- Observations will provide observational constraints on the first stars and first galaxies.
 - In the JWST era, we will be able to detect the first light!
 - In the LSST era, the discovery of new faint galaxies will accelerate.
 - In the GMT era, theoretical predictions can be probed with the greatly improved spectroscopic sensitivities of the GMT observations of metalpoor stars and DLAs.

Reionization

 $(t_H \sim 1 \text{ Gyr})$

Thank you!

Understanding the faint-end is a key: How many faint galaxies were there?

Is the observed DLA associated with a UFD?

Extremely metal poor DLA ([Fe/H] \sim -3 at z=3, N_{HI} \sim 10²¹ cm⁻², Cooke et al. 2017) may be

- unlikely to be associated with UFDs since having neutral gas at z=3 is hard for UFDs.
- not a Pop III DLA since the metal enrichment has already progressed at z=3.

How to distinguish Pop III signatures?

UFD analogs and low-mass dwarfs

 $(M_{\rm star} < 10^4 \, {\rm M}_{\odot})$ Halo6: $M_{\rm star} \sim 10^6 \, {\rm M}_{\odot})$

Low metallicity stars were formed in minihalos at high-z via external metal-enrichment.

Dwarf galaxies in Local Group

M31 satellites

PAndAs: N ~ 30

Dwarf galaxies as a time machine Stellar Archaeology

No/a little star formation for ~ 13 Gyr

High-z (z > 6)

- The main driver of cosmic reionization.
- can study early stellar populations (first stars and the second generation of stars).

Fossil galaxies

Direct detection of first stars is impossible

First galaxies?

Yes. (JWST, GMT, etc.)
(i.e., Pawlik+2013, Jeon+2015, Barrow+2017, Ma+2017)

First Stars?

Maybe Not for direct light detection.

Possible via pair-instability supernova (PISN), core-collapse supernova (CCSN), or gamma-ray burst (GRB) (i.e., Hummel+2012, Whalen+2013)

First star remnants? Yes,

Damped Lyman Alpha systems (DLAs)
Extremely low-metallicity stars in local dwarfs (Jeon+2017).

Presence of metal-poor stars

Low metallicity stars were formed in minihalos at high-z via external metal-enrichment.

Internal vs. external enrichment

Metal poor stars, [Fe/H<-3], were mainly formed via external metal enrichment.

Recent dwarf galaxy formation

Stellar Mass

 $10^7~{
m M}_{\odot}$

 $10^6~{
m M}_{\odot}$

 $10^5~{
m M}_{\odot}$

 $10^4~{
m M}_{\odot}$

Simpson et al. (2013)

ENZO, Res. : 500 M_☉ (gas), ~2000 M_☉ (DM)

Fitts et al. (2016, 2018)

FIRE,

Res.: 500 M_☉ (gas), ~2500 M_☉ (DM)

Wheeler et al. (2015), Onorbe et al. (2015)

FIRE , Res. : 125-500 M_☉ (gas), ~700-2000 M_☉ (DM)

Jeon et al. (2017)

Gadget , Res. : 500 M_☉ (gas), ~500 M_☉ (DM)

Mass Growth

Assembly history of UFDs. Mergers vs. in-situ star formation

Build up of stellar mass in UFDs : early mergers!

- Stellar growth is a consequence of the combination of in-situ star formation and significant stellar accretion.
- It is not simple to infer where stars have originated..
- Stellar growth of low-mass systems conflicts with the prevailing view.

Jeon et al. 2017

Distinctive assembly history between UFDs and low mass dwarfs?

Possible factors:

- H₂ cooling minihalos.
- The onset of reionization.
- A short star formation history of UFDs.

Dwarf galaxies with masses of M_{halo}[~] 10¹⁰ M_⊙: Mergers are mostly irrelevant for the growth of low-mass dwarf galaxies.

Halo mass – stellar mass

Pop III signature: Carbon enhanced metal-poor stars (CEMPs) in UFDs

Origin of CEMPs?

- 1) rapidly-rotating <u>massive</u>

 <u>Pop III stars</u>, capable of releasing large amounts of CNO-enhanced materials.
- Binary systems with a companion star that undergoes an <u>AGB</u> phase.
- 3) Pop III SNe with a low explosion energy.

Salvadori et al. 2015