High-redshift Quasar Survey with IMS

Kim, Y., et al. 2015, ApJ, 813, L51 Kim, Y., et al. 2018, ApJ, submitted

Yongjung Kim^{1,2}, Myungshin Im^{1,2}, Yiseul Jeon³, Minjin Kim⁴, and IMS Team¹

¹Center for the Exploration of the Origin of the Universe (CEOU)

²Astronomy Program, FPRD, Department of Physics & Astronomy, Seoul National University

³FEROKA Inc.

⁴Department of Astronomy and Atmospheric Sciences, College of Natura Sciences, Kyungpook National University

High-redshift Quasars

Cosmic Reionization

• Which objects can fully ionize the neutral hydrogens?

High-redshift Quasar Survey with IMS

Infrared Medium-deep Survey (IMS; M. Im et al, in prep)

- Near-infrared imaging survey using WFCAM on UKIRT
- 120 deg², 5 σ depth of J_{AB}~23 mag
- Overlapped with optical data from CFHT Legacy Survey (CFHTLS)

• Three Steps for Finding Quasars at z~ 5 & 6

- Broad-band color selections based on their distinct spectral properties
- Medium-band observations using SQUEAN on Otto Struve 2.1m Telescope
- Spectroscopically identification with large telescopes

Discoveries & Implication to Reionization

Discoveries of High-redshift Quasars

Minor Contribution to Cosmic Reionization

At z~6, Less than 15% of required UV photons from faint quasars $(-25 < M_{1450} < -22)$

> QLFs at z~5 & 6 Coming Soon!