The 8th KIAS workshop on Cosmology and Structure Formation November 4-9, 2018

Axion as a cold dark matter candidate: proof to fully nonlinear order

> J Hwang, H Noh, C-G Park 6 November 2018, KIAS

Axions and the strong *CP* problem

Jihn E. Kim*

Current upper bounds on the neutron electric dipole moment constrain the physically observable quantum chromodynamic (QCD) vacuum angle $|\bar{\theta}| \leq 10^{-11}$. Since QCD explains a great deal of experimental data from the 100 MeV to the TeV scale, it is desirable to explain this smallness of $|\bar{\theta}|$ in the QCD framework; this is the strong *CP* problem. There now exist two plausible solutions to this problem, one of which leads to the existence of a very light axion.

axions may constitute a significant fraction

of the dark matter of the universe.

Axion:

Scalar field:
$$T_{ab} = \phi_{,a}\phi_{,b} - \left(\frac{1}{2}\phi^{;c}\phi_{,c} + V\right)g_{ab}$$

 $\phi^{;c}_{\ c} = V_{,\phi} \longleftarrow \begin{array}{c} \text{Klein-Gordon equation:} \\ \text{Relativistic Schrödinger equation} \end{array}$

 $V = \frac{1}{2}m^2\phi^2$

Axion as a CDM candidate, proofs:

Abbott, Sikivie (1983) Dine, Fischler (1983)
Preskill, Wise, Wilczek (1983)
Khlopov, Malomed, Zeldovich (1985)
Nambu, Sasaki (1990) Zero-shear gauge
Ratra (1991) Synchronous gauge
JH (1997) Uniform-curvature gauge
Sikivie, Yang (2009) Zero-shear gauge
JH, Noh (2009) Axion comoving gauge (ACG)
Fuzzy dark matter, huge industry!
Noh, Park, JH (2013, 2015) ACG (2017) ACG

Fully NL & Exact Pert. Theory

JH, Noh, MN **433** 3472 (2013) JH, Noh, Park, MN **461** 3239 (2016) Gong, JH, Noh, Wu, Yoo, JCAP **10** 027 (2017)

Convention: (Bardeen 1988)

$$ds^{2} = -a^{2} (1 + 2\alpha) d\eta^{2} - 2a^{2} \left(\beta_{,i} + B_{i}^{(v)}\right) d\eta dx^{i} \qquad \text{No TT-pert!} \\ +a^{2} \left[(1 + 2\varphi) g_{ij}^{(3)} + 2\beta_{i|j} + \beta_{i|j}^{(v)} + \beta_{j|i}^{(v)} + 2\beta_{ij}^{(v)} \right] dx^{i} dx^{j}, \\ \chi \equiv a\beta + a^{2} \beta, \quad \Psi_{i}^{(v)} \equiv B_{i}^{(v)} + a \dot{\beta}_{i}^{(v)}, \\ \text{Spatial gauge condition} \\ \widetilde{T}_{ab} = \widetilde{\mu} \widetilde{u}_{a} \widetilde{u}_{b} + \widetilde{p} (\widetilde{u}_{a} \widetilde{u}_{b} + \widetilde{g}_{ab}) + \widetilde{\pi}_{ab}, \quad \widetilde{u}_{i} \equiv a\gamma \frac{v_{i}}{c} \quad \gamma \equiv \frac{1}{\sqrt{1 - \frac{1}{1 + 2\varphi} \frac{v^{2}}{c^{2}}}} \\ \widetilde{\mu} \equiv \mu + \delta\mu \equiv \mu (1 + \delta), \quad \widetilde{p} \equiv p + \delta p, \quad v_{i} \equiv -v_{,i} + v_{i}^{(v)} \\ \text{Spatial gauge:} \quad \gamma \equiv 0 \equiv C_{i}^{(v)}, \\ \chi_{i} \equiv \chi_{,i} + a\Psi_{i}^{(v)} = a \left(\beta_{,i} + B_{i}^{(v)}\right) \\ \text{Temporal gauge still not taken yet!}$$

Remaining variables are spatially gauge-invariant

to fully NL order! ... Lose no generality!

Complete spatial gauge fixing.

(JH, Noh 2013)

$$\widetilde{g}_{00} = -a^2 (1+2\alpha), \qquad \widetilde{g}_{0i} = -a\chi_i, \qquad \widetilde{g}_{ij} = a^2 (1+2\varphi) g_{ij}^{(3)}.$$

Inverse metric:

$$\begin{split} \widetilde{g}^{00} &= -\frac{1}{a^2} \frac{1+2\varphi}{(1+2\varphi)(1+2\alpha) + \chi^k \chi_k/a^2}, \\ \widetilde{g}^{0i} &= -\frac{1}{a^2} \frac{\chi^i/a}{(1+2\varphi)(1+2\alpha) + \chi^k \chi_k/a^2}, \\ \widetilde{g}^{ij} &= \frac{1}{a^2(1+2\varphi)} \left(g^{(3)ij} - \frac{\chi^i \chi^j/a^2}{(1+2\varphi)(1+2\alpha) + \chi^k \chi_k/a^2} \right). \end{split}$$

Using the ADM and the covariant formalisms the rest are simple algebra. We do not even need the connection!

Fully Nonlinear Perturbation Equations without taking temporal gauge condition

With TT perturbation:

$$\widetilde{g}_{00} = -a^{2} (1+2\alpha), \quad \widetilde{g}_{0i} = -a\chi_{i}, \quad \widetilde{g}_{ij} = a^{2} [(1+2\varphi)\delta_{ij} + 2h_{ij}].$$

$$(1+2\gamma_{ij} + 2C_{(i,j)}^{(v)}) \equiv 0$$

$$(1+2\gamma_{ij} + 2C_{(i,j)}^{(v)}) \equiv 0$$

$$(1+2\gamma_{ij} + 2C_{(i,j)}^{(v)}) \equiv 0$$

$$Spatial Gauge taken$$

$$= spatial Harmonic to 1PN$$

$$\widetilde{g}^{ij} = \frac{1}{a^{2}(1+2\varphi+I)} \left(\delta^{ij} + H^{ij} - \frac{(\delta^{ik} + H^{ik})(\delta^{j\ell} + H^{j\ell})}{a^{2}\mathcal{N}^{2}(1+2\varphi+I)}\chi_{k}\chi_{\ell}\right).$$

$$H^{ij} = -2\frac{(1+2\varphi)h^{ij} - 2h^{ik}h_{k}^{j}}{(1+2\varphi)^{2} - 2h^{k\ell}h_{k\ell}}, \quad I \equiv \frac{8}{3}\frac{h_{k\ell}h_{m}^{k}h^{\ell m}}{(1+2\varphi)^{2} - 2h^{k\ell}h_{k\ell}}$$

$$N = a\sqrt{1+2\alpha + \frac{\delta^{ij} + H^{ij}}{a^{2}(1+2\varphi+I)}\chi_{i}\chi_{j}} \equiv a\mathcal{N}.$$

Gong, JH, Noh, Wu, Yoo, JCAP (2017)

$$\begin{aligned} & \textbf{Without any assumption:} \quad \textbf{TT} \\ ds^{2} &= -a^{2}(1+2\alpha)d\eta^{2} - 2a^{2}B_{i}d\eta dx^{i} + a^{2}\left[(1+2\varphi)\delta_{ij} + 2\gamma_{,ij} + 2C_{(i,j)}^{(v)} + 2C_{ij}\right]dx^{i}dx^{j} \\ B_{i} &= \beta_{,i} + B_{i}^{(v)} \quad \chi_{i} \equiv a\left(B_{i} + a\dot{\gamma}_{,i} + a\dot{C}_{i}^{(v)}\right) \quad Y_{ij} \equiv \gamma_{,ij} + C_{(i,j)}^{(v)} + C_{ij} \\ & \det[h_{ij}] = a^{6}\left[(1+2\varphi + \Delta\gamma)^{2} + (\Delta\gamma)^{2} - 2Y^{kl}Y_{kl}\right] \\ \textbf{ADM intrinsic curvature} \times \left\{1 + 2\left[\underbrace{\varphi + \frac{2}{3}\frac{(\Delta\gamma)^{3} - 3(\Delta\gamma)Y^{kl}Y_{kl} + 2Y_{kl}Y^{k}mY^{lm}}{(1+2\varphi + \Delta\gamma)^{2} + (\Delta\gamma)^{2} - 2Y^{ln}Y_{pq}}\right]\right\}, \\ & e^{i}_{lm}e^{j}_{pq}h_{pl}h_{qm} = 2a^{4}\left[(1+2\varphi + \Delta\gamma)^{2} + (\Delta\gamma)^{2} - 2Y^{kl}Y_{kl}\right] \\ & = \varphi \\ & \left\{s^{00} = -\frac{1}{a^{2}\mathcal{N}^{2}} + \frac{\delta^{ij} + H^{ij}}{a^{2}\mathcal{N}^{2}(1+2\varphi)} + \frac{\lambda^{j}}{a}, \\ g^{0i} = -\frac{\delta^{ij} + H^{ij}}{a^{2}\mathcal{N}^{2}(1+2\varphi)} \frac{\chi_{j}}{a}, \\ & \textbf{All spatial indices raised and lowered by } \delta_{\mathbf{ij}} \\ & g^{ij} = \frac{1}{a^{2}(1+2\varphi)} \left[\delta^{ij} + H^{ij} - \frac{(\delta^{ik} + H^{ik})(\delta^{jl} + H^{jl})}{a^{2}\mathcal{N}^{2}(1+2\varphi)} \chi_{k}\chi_{l}\right]. \\ & N = a\sqrt{1 + 2\alpha + \frac{\delta^{ij} + H^{ij}}{a^{2}(1+2\varphi)}} \chi_{i}\chi_{j} \equiv a\mathcal{N} \end{aligned}$$

Temporal gauge (slicing, hypersurface):

comoving gauge : $v \equiv 0$,zero-shear gauge : $\chi \equiv 0$, Longitudinal, Newtonian, Poisson, ...uniform-curvature gauge : $\varphi \equiv 0$,uniform-expansion gauge : $\kappa \equiv 0$,uniform-density gauge : $\delta \equiv 0$,synchronous gauge : $\alpha \equiv 0$. \rightarrow Remnant gauge mode

Applicable to fully NL orders!

Except for synchronous gauge, complete gauge fixing. Remaining variables are gauge-invariant to fully NL order!

Zero-pressure irrotational fluid Comoving gauge

Linear-order: (Lifshitz 1946, synchronous gauge, comoving gauge)

$$\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} - 4\pi G\mu\delta = 0,$$

Second-order: (Noh, JH 2004, comoving gauge)

Relativistic/Newtonian correspondence to second order. This equation is valid to fully nonlinear order in Newtonian theory.

$$\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} - 4\pi G\mu\delta = -\frac{1}{a^2}\frac{\partial}{\partial t}\left[a\nabla\cdot(\delta\mathbf{u})\right] + \frac{1}{a^2}\nabla\cdot(\mathbf{u}\cdot\nabla\mathbf{u}),$$

Third-order: (JH, Noh 2005, comoving gauge)

$$\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} - 4\pi G\mu\delta = -\frac{1}{a^2}\frac{\partial}{\partial t}[a\nabla\cdot(\delta\mathbf{u})] + \frac{1}{a^2}\nabla\cdot(\mathbf{u}\cdot\nabla\mathbf{u})$$

$$+\frac{1}{a^2}\frac{\partial}{\partial t}\{a[2\varphi\mathbf{u} - \nabla(\Delta^{-1}X)]\cdot\nabla\delta\} - \frac{4}{a^2}\nabla\cdot\left[\varphi\left(\mathbf{u}\cdot\nabla\mathbf{u} - \frac{1}{3}\mathbf{u}\nabla\cdot\mathbf{u}\right)\right]$$

$$+\frac{2}{3a^2}\varphi\mathbf{u}\cdot\nabla(\nabla\cdot\mathbf{u}) + \frac{\Delta}{a^2}[\mathbf{u}\cdot\nabla(\Delta^{-1}X)] - \frac{1}{a^2}\mathbf{u}\cdot\nabla X - \frac{2}{3a^2}X\nabla\cdot\mathbf{u},$$

$$X \equiv 2\varphi\nabla\cdot\mathbf{u} - \mathbf{u}\cdot\nabla\varphi + \frac{3}{2}\Delta^{-1}\nabla\cdot[\mathbf{u}\cdot\nabla(\nabla\varphi) + \mathbf{u}\Delta\varphi].$$

Baryonic matter power spectrum in the CDM model: linear order

Leading Nonlinear Density Power-spectrum in the Comoving gauge

Zero-pressure irrotational fluid in the comoving gauge (no TT)

Covariant energy-conservation:

$$\dot{\delta} - \kappa - \delta \kappa + \frac{1}{a^2} \chi^{,i} \delta_{,i} = \frac{2\varphi \chi^{,i} \delta_{,i}}{a^2(1+2\varphi)},$$

Trace of ADM propagation (Raychaudhury equation):

$$\begin{aligned} \dot{k} + 2H\kappa - 4\pi G\delta\mu - \frac{1}{3}\kappa^{2} + \frac{1}{a^{2}}\chi^{,i}\kappa_{,i} - \frac{1}{a^{4}}\left[\chi^{,ij}\chi_{,ij} - \frac{1}{3}(\Delta\chi)^{2}\right] &= \frac{2\varphi\chi^{,i}\kappa_{,i}}{a^{2}(1+2\varphi)} - \frac{4\varphi(1+\varphi)}{a^{4}(1+2\varphi)^{2}}\left[\chi^{,ij}\chi_{,ij} - \frac{1}{3}(\Delta\chi)^{2}\right] \\ &+ \frac{2}{a^{4}(1+2\varphi)^{3}}\left\{\frac{2}{3}(\Delta\chi)\chi^{,i}\varphi_{,i} - 2\chi^{,ij}\chi_{,i}\varphi_{,j} + \frac{1}{1+2\varphi}\left[\frac{1}{3}(\chi^{,i}\varphi_{,i})^{2} + \chi^{,i}\chi_{,i}\varphi^{,i}\varphi_{,j}\right]\right\} - \frac{\hbar^{2}\Delta}{2m^{2}a^{4}}\frac{\Delta\sqrt{1+\delta}}{\sqrt{1+\delta}} \\ \text{ADM momentum constraint:} \\ \left[\left(\kappa + \frac{\Delta}{a^{2}}\chi\right)_{,i}\right] &= \frac{2\varphi\Delta\chi_{,i}}{a^{2}(1+2\varphi)} + \frac{1}{a^{2}(1+2\varphi)^{2}}\left[2(\Delta\chi)\varphi_{,i} + \frac{1}{2}\chi^{,i}\varphi_{,ik} - \chi_{,ik}\varphi^{,k} + \frac{3}{2}\chi_{,i}\Delta\varphi - \frac{3}{2}\frac{1}{1+2\phi}\left(\chi_{,i}\varphi_{,k} + \frac{1}{3}\chi_{,k}\varphi_{,i}\right)\varphi^{,k}\right]. \\ \text{Newtonian} \begin{array}{l} \text{RHS = pure Einstein's gravity corrections,} \\ \text{starting from the third order, all involving } \mathcal{O} \\ \text{Definition of kappa + ADM momentum constraint:} \\ \left[\ln(1+2\varphi)]_{,i}^{*} &= \frac{1}{a^{2}(1+2\varphi)^{2}}\left[\chi^{,k}\varphi_{,ik} + \chi_{,i}\Delta\varphi - \frac{1}{1+2\varphi}(\chi_{,i}\varphi_{,k} + 3\chi_{,k}\varphi_{,i})\varphi^{,k}\right], \\ \text{Hentify:} \quad \kappa &\equiv -\frac{1}{a}\nabla\cdot\mathbf{u} \end{array}$$

Axion Axion comoving gauge

Background:

Strictly ignore:
$$\frac{H_0}{m} = 2.133 \times 10^{-28} h \left(\frac{m}{10^{-5} \text{ eV}}\right)^{-1}$$

Ansatz: $\phi(t) = \phi_{+}(t) \sin(mt) + \phi_{-}(t) \cos(mt)$ (Ratra 1991)

EOM: $\ddot{\phi} + 3H\dot{\phi} + m^2\phi = 0$,

$$\Rightarrow \phi(t) = a^{-3/2} [\phi_{+0} \sin(mt) + \phi_{-0} \cos(mt)]$$

Fluid quantities:

$$\mu = \frac{1}{2} \langle \dot{\phi}^2 + m^2 \phi^2 \rangle = \frac{1}{2} m^2 a^{-3} (\phi_{+0}^2 + \phi_{-0}^2),$$

$$p = \frac{1}{2} \langle \dot{\phi}^2 - m^2 \phi^2 \rangle = 0, \qquad \langle f(t) \rangle \equiv \frac{m}{2\pi} \int_{0}^{2\pi/m} f(t') dt'$$

... Pressureless fluid!

Linear order:

Ansatz:
$$\delta \phi(k, t) = \delta \phi_+(k, t) \sin(mt) + \delta \phi_-(k, t) \cos(mt).$$

Fluids:
$$\delta \mu = \langle \dot{\phi} \delta \dot{\phi} - \dot{\phi}^2 \alpha + m^2 \phi \delta \phi \rangle,$$

 $\delta p = \langle \dot{\phi} \delta \dot{\phi} - \dot{\phi}^2 \alpha - m^2 \phi \delta \phi \rangle,$
 $\frac{a}{k} (\mu + p) \nu = \langle \dot{\phi} \delta \phi \rangle, \quad \sigma = 0.$
Anisotropic stress
EOM: $\delta \ddot{\phi} + 3H \delta \dot{\phi} + \frac{k^2}{a^2} \delta \phi + V_{,\phi\phi} \delta \phi$
 $= \dot{\phi} (\kappa + \dot{\alpha}) + (2\ddot{\phi} + 3H\dot{\phi}) \alpha.$

Axion-comoving gauge: $(\mu_a + p_a)v_a \equiv 0.$

(JH, Noh 2009)

Derivation in Axion comoving gauge:

Energy conservation & Raychaudhury equations:

$$\dot{\delta} = \kappa$$
$$\dot{\kappa} + 2H\kappa = 4\pi G \varrho \delta + \frac{\Delta}{a^2} \frac{\delta p}{\varrho}$$

 $\begin{array}{ll} {}_{\mathbf{T^{c}}_{\mathbf{i};\mathbf{c}}}^{\mathbf{EOM}} & & \delta p = -\frac{1}{4}\frac{\Delta}{m^{2}a^{2}}\delta \varrho \\ {}_{\mathbf{T^{c}}_{\mathbf{0};\mathbf{c}}}^{\mathbf{c}} & & \end{array}$

$$\Rightarrow \quad \ddot{\delta} + 2H\dot{\delta} - \left(4\pi G\varrho - \frac{1}{4}\frac{\Delta^2}{m^2 a^4}\right)\delta = 0$$

Valid in ALL cosmological scales

Axion Jeans scale:

$$\ddot{\delta} + 2H\dot{\delta} - \left(4\pi G\varrho - \frac{1}{4}\frac{k^4}{m^2a^4}\right)\delta = 0$$

Sound speed: $c_s \equiv \sqrt{\frac{\delta p}{\delta\mu}} = \frac{1}{2}\frac{k}{ma}$

Jeans scale: (Khlopov, Malomed, Zeldovich 1985; Nambu, Sasaki 1990)

$$\lambda_J \equiv \frac{2\pi a}{k_J} \equiv \left(\frac{\pi^3}{G\rho m^2}\right)^{1/4}$$
$$= 50h^{-1/2} \left(\frac{m}{10^{-5}eV}\right)^{-1/2} \text{AU}$$
$$= 2.4h^{-1/2} \left(\frac{m}{10^{-25}eV}\right)^{-1/2} \text{Mpc}$$

 CDM in ALL cosmological scales for QCD axion Fuzzy dark matter for extremely low-mass axion
 .

Axion as a Cold Dark Matter Candidate: Proof to Fully Nonlinear Order

Hyerim Noh¹⁽¹⁾, Jai-chan Hwang², and Chan-Gyung Park³

Fully nonlinear and exact:

Perturbed lapse:
$$\delta \mathcal{N} = \frac{\hbar^2}{2m^2 a^2 c^2} \frac{\Delta \sqrt{\varrho}}{\sqrt{\varrho}}$$

Perturbed pressure: $\delta p = -\frac{\hbar^2}{4m^2 a^2} \Delta \varrho$
Anisotropic stress: $\Pi_{ij} = \frac{\hbar^2}{4m^2 a^2} \frac{1}{\varrho} \left(\varrho_{,i} \varrho_{,j} - \frac{1}{3} \delta_{ij} \varrho^{,k} \varrho_{,k} \right)$

Weak gravity limit:

Energy conservation & Raychaudhury equations:

$$\begin{split} \dot{\delta} &+ \frac{1}{a} \nabla \cdot \mathbf{u} + \frac{1}{a} \nabla \cdot (\delta \mathbf{u}) = 0 \\ \frac{1}{a} \nabla \cdot \left(\dot{\mathbf{u}} + H \mathbf{u} \right) + 4\pi G \varrho \delta + \frac{1}{a^2} \nabla \cdot (\mathbf{u} \cdot \nabla \mathbf{u}) \\ &= \frac{\hbar^2 \Delta}{2m^2 a^4} \frac{\Delta \sqrt{1 + \delta}}{\sqrt{1 + \delta}} \end{split}$$

$$\vec{\delta} + 2H\dot{\delta} - 4\pi G\varrho\delta + \frac{1}{a^2} \left[a\nabla \cdot (\delta \mathbf{u})\right] \cdot -\frac{1}{a^2}\nabla \cdot (\mathbf{u} \cdot \nabla \mathbf{u})$$
$$= -\frac{\hbar^2 \Delta}{2m^2 a^4} \frac{\Delta\sqrt{1+\delta}}{\sqrt{1+\delta}}$$

Zero-pressure, irrotational, no GW in Axion comoving gauge Exact!

Low-mass Axion Fuzzy dark matter

Low-mass Axion: (Park, JH, Noh 2012)

Low-mass axion as a fuzzy CDM: (Park, JH, Noh 2012)

If the dark matter is composed of FDM, most observations favor a particle mass $\gtrsim 10^{-22}$ eV Hui, Ostriker, Tremaine, Witten (2017)

Neutrino as a HDM: (Park, JH, Noh 2012)

mass ranges from $m_{\nu} = 0.154 \text{ eV}$ ($\Omega_{\nu 0} = 0.01$; red) to 0.769 eV ($\Omega_{\nu 0} = 0.05$; violet curves), with a relation ($\Omega_{\nu 0} + \Omega_{c0}$) $h^2 = 0.1123$. Black curves represent the power spectrum of the fiducial Λ CDM model with massless neutrinos. The curves in the bottom

Quantum Nature

Madelung's QM interpretation:

Quantentheorie in hydrodynamischer Form.

Von E. Madelung in Frankfurt a. M.

(Eingegangen am 25. Oktober 1926.)

$$\varDelta \psi - \frac{8 \pi^2 m}{h^2} U \psi - i \frac{4 \pi m}{h} \frac{\partial \psi}{\partial t} = 0.$$

$$\psi = \alpha e^{i\beta} \quad \varphi = -\frac{\beta h}{2 \pi m} \quad \mathfrak{u} = \operatorname{grad} \varphi$$

$$(2)$$

Identify:
$$\mathbf{u} \equiv \nabla u \equiv \nabla \varphi \equiv -\frac{\hbar}{m} \nabla \beta$$
 $\alpha \equiv \sqrt{\varrho}$
 $/m \rightarrow \text{Continuity eq.:} \quad \text{div} (\alpha^2 \operatorname{grad} \varphi) + \frac{\partial \alpha^2}{\partial t} = 0.$ (4')

Jeans scale due to uncertainty principle:

$$\lambda_{J_a} \equiv \frac{2\pi a}{k_{J_a}} = \sqrt{\frac{\pi\hbar}{m}} \sqrt{\frac{\pi}{G\varrho}} \sim 5.4 \times 10^{14} \mathrm{cm} \sqrt{\frac{10^{-5} \mathrm{eV}}{mh}}$$

 $\Leftarrow \frac{h}{\lambda} \sim \frac{h}{mv_g} \sim \frac{h}{m\lambda/t_g} \sim \frac{h}{m\lambda\sqrt{G\varrho}}$ $v_g \sim \frac{\lambda}{t_g} \qquad t_g \sim \frac{1}{\sqrt{G\varrho}}$

(Hu, Barkana, Gruzinov 2000)