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Constraints on the total mass fraction in the form of PBH
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LIGO suggests the BBH mass function is shallow

If so, then ...

Where are the massive BBH in our Galaxy?
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ICARUS P. Kelly, J.M. Diego et al 2018, Nature Ast. 2, 334-342
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Microlenses near Critical Curves
(always present at extreme magnifications)

Width of saturation region proportional to X (microl. Surface mass density)
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Interpretation

2014 October 30 2016 January 3 2017 Lev 2017A
Lev 20168 4

<

® '
i

-
/ 1 0" ¥

LS1/ Lev 2016A L5171 /Lev 2016A LS1/Lev 2016A

Kelly et al. 2018

: "‘ Tl
\.) }jl ‘ :

| "‘ (M | | || H | 'I. | ‘i ! ‘ i YI | i ‘ | | |
(1) 1\ oy 1% | i I VLR
(S (4! 1 (

an | | Magnification from
Diego et al. In prep. stars in the ICM




lapyx -
lcarus |

| V * JM Jj!
J A
I

20 40 60 80 100

Interpretation

10000 =

Magnification

I M| images on this side
|| can remain “hidden”
| for long periods

Diego et al. In prep.



ICARUS
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Icarus events fully consistent with scenario where microlenses are stars and remnants
from the intra-cluster medium.

The amount of allowed compact dark matter (for instance PBH) in the galaxy cluster can
not account for more than a few percent of the total mass of the cluster.

More data on the continuous fluctuations of Icarus would set tighter constraints in the
abundance of compact dark matter, including PBH.

P. Kelly, J.M. Diego et al 2018, Nature Ast. 2, 334-342
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Can we do better?

J.M. Diego, 2018

More microlenses —» More distortion
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Caustic region
without microlenses
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Lensing probability at critical curves in the presence of microlenses
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Looking for events in regions with relatively low contribution from “stellar”
microlenses is more sensitive to the abundance of compact dark matter
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Lensing probability at critical curves in the presence of microlenses
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Is LIGO really seeing >20 M,
black holes?

Broadhurst, Diego & Smoot
ArXiv:1802.05273



LIGO-> Massive (M>20) are as common as less massive (M<20)

If so, then ...

Why don't we see the heavy LIGO's masses in our Galaxy and in local galaxies?

Black Holes of Known Mass

X-Ray Studies
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Credit: Marie Anne Bizourad & LIGO collaboration
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LIGO basics
Observed

. *M =M _(1+2)
Inferred%

h(t) ~ sqrt(u) (M*°ID(2))F(t,M,6)

D(Zest) - D(Ztrue)lsq rt(u)

IF an event at high z is magnified by a large factor, u, then if lensing is
ignored, it will appear as a much closer event with a larger mass.

Then, IF the probability of lensing is reasonable, some of the LIGO
events may be actually distant lensed events with smaller masses

Unlike other events (SNe, GRB, etc) all sky is observed at once. The
only limitations are dictated by the geometric factor, 0.
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Massive halos are more relevant for extreme magnifications
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Net probability by all halos & at all redshifts

for a source at z=2
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A back of the envelope calculation

Probability of having magnification larger than 100 : ~3E-7

Volumen between z=1.9 and 2.1 - ~ 100 Gpc®

Rate of events at z=2 . ~ 3E4 /(yr Gpc?)
Compare with ~10° per
yr & Gpc® for SNe

Total Number of events between z=1.9 and 2.1 . 3E6 per year

Total Number of lensed events between z=1.9 and 2.1 : ~ 1 per year

Rate needs to be of order 10*for lensing hypothesis to work

We do not know what the actual rate is !



Rate(z) [yr'Gpc”]

Model elements: Rates and BBH mass function

Basic assumption is that the rate of events at high-z is high to

compensate the small probability for lensing

Mass function is assumed to be “natural”, that is, consistent with
observational constrains from our Galaxy
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Inferred M, [M,]

Strong Evolution + Monochromatic MF
A simple monochromatic mass function already
does a decent job at reproducing the data
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Modest Evolution +Broad MF
Many events should have been detected
by LIGO in this regime. Where are they?
Strong Evolution + Gauss MF
A Gaussian mass function goes

in the right direction Broadhurst, Diego & Smoot 2018



Inferred M, [M,]
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OUR BEST MODEL

Strong Evolution + Natural MF

Rate of low and high frequency events in
reasonable agreement with observations
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Observed mass function should be bi-modal or have a long talil
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CONCLUSIONS

PBH are a candidate for DM which become popular after LIGO
detected a relatively abundant of BH with >20 M

Microlensing can set limits on the abundance of BH (including PBH)

LIGO - IF the rate of events at z~2 is in the range of 10”4, the low
frequency events observed by LIGO are (likely) gravitationally lensed
WG at z>1 with BH masses ~ 10 Msun.

If LIGO-lensing is taking place, should see even more massive events
In the future at troublesome small distances (are we living in a special
Galaxy?) and interference effects.

Events at extreme magnification are more likely than previously
thought (specially for bright objects).



