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Outline
• Radiation-regulated accretion

– Billon solar mass black holes at z~6-7?
– Radiation-driven turbulent accretion (Park, Wise, & 

Bogdanović, 2017)

• Hyper-accretion
– Breaking spherical symmetry (Park+ in prep)

• Bulge-driven fueling (Park+ 2016)
- A possibility for hyper-accretion
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Motivation: Quasars in the early universe

Quasars (actively accreting BHs) are 
observed at z~6-7!

Fan+ 01,03
Willot+ 03,10
Mortlock +11
Wu+ 15



Initial Mass of Seed Black Holes

• Seed BH Formation Scenarios
(IMBH)
– Pop III remnants : ~102 M¤

– Stellar collapses : ~104 M¤

– Direct collapse : ~105 M¤

• E.g., Pop III remnants 
– Initial mass should increase by 7 

orders of mag
– Should Accrete at Eddington rate for 

~700 Myr

• Estimation of grow rate is 
important!

Volonteri 12
Natarajan 11



How do we estimate an accretion rate onto a BH?

Bondi Accretion (1952) 
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Radiative Feedback by Black Hole
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Radiation-regulated Accretion 
Classical Bondi problem 
+ Radiative Feedback
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Park & Ricotti (2011, 2012)



Radiation-regulated accretion 
Periodic oscillation of accretion rate due to accretion/feedback loop
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Park & Ricotti (2011, 2012)



fduty increases in mode-II oscillations.
Makes Eddington-limited accretion 

efficient

Mode-I vs Mode-II Oscillations

Mode-I

Mode-II

Mode-I Mode-II

fduty=6%

fduty=50%

Park & Ricotti 2012



Accretion is suppressed
Parameter Space Exploration

Average 
accretion rate

Period 
between 

bursts

Accretion 
rate at 
peaks
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Radiation-driven turbulent accretion (3D simulations)
Park, Wise, & Bogdanovic, 2017



Vorticity and turbulence

Line integral convolution of velocity field
Park, Wise, & Bogdanovic 2017

RADIATION-DRIVEN TURBULENT ACCRETION ONTO MASSIVE BLACK HOLES 7

Figure 4. From top to bottom: slices of radial velocity, tangential velocity magnitude, Mach number, and thermal pressure in run M6N1, respectively. The times
for each snapshot match those shown in Fig. 1.

highest thermal pressure as the dense gas close to the BH is
photo-heated during the burst of accretion. A spherical shell
around the ionization front also exhibits high thermal pressure
because the neutral clumps of gas in this region are efficiently
photo-heated by the ionizing UV photons that escape absorp-
tion by the central core.

After the burst, the central region starts to develop an out-
flow (second and third columns) driven by the high ther-
mal pressure. The high thermal pressure, located at the core
and around the ionization front in the first column, expands
and dissipates as the the accretion powered luminosity de-
creases in time. The average thermal pressure is maximal
during the burst (first column) and decreases as a function of
time displaying the minimum just before the subsequent burst
(last column). The inner region becomes gradually under-
pressurized due to expansion and radiative cooling. This al-
lows the gas to flow toward the center, causing a subsequent

accretion burst.
The velocity structure in this work is distinct from

the 1D/2D simulations where a strong laminar (i.e., non-
turbulent) outflow in the outer part of the Strömgren sphere
persists most of the time. In these simulations the ionization
front collapses completely due to the loss of thermal pressure
in the ionized region. The 3D simulations described here in-
stead show highly turbulent motion in both radial (first row)
and tangential directions (second row) that cascades to small
scales over several oscillation cycles. The tangential veloc-
ity is only suppressed in the central region during the strong
inflow and outflow episodes.

3.4. Evolution of vorticity

We use vorticity, defined as a curl of the velocity field

~! = ~r⇥ ~v (10)
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Figure 5. Evolution of vorticity magnitude, |~!|, in run M6N1 at t = 0, 100, 150, 200 Myr over-plotted with the line integral convolution of velocity field. The
vorticity builds up over time but saturates during the last quarter of the simulation.

to quantify the degree of turbulent motion of the gas. Figure 5
shows the evolution of vorticity at times 50.0, 100.0, 150.0,
and 200.0 Myr in the run M6N1. The line integral convolu-
tion, a method to create a texture correlated in the direction
of the vector field, is shown in black over vorticity magni-
tude. The vorticity is highest around the ionization front and
propagates outward. It builds up over time and saturates dur-
ing the last quarter of the simulation, at t = 150.0Myr, af-
ter which point it does not display a significant increase until
t = 200.0Myr.

The propensity of the gas to develop turbulence in 3D simu-
lations can be understood in the context of the vorticity equa-
tion, which written as Lagrangian derivative (D/Dt) reads

D~!

Dt
=

@~!

@t
+ (~v ·r)~! =

1

⇢2
r⇢⇥rp (11)

The right hand side of the equation quantifies the baroclin-

icity of a stratified fluid, present when the gradient of pressure
is misaligned from the density gradient of the gas. In our
simulations, the local density gradients have no preferred di-
rection because of the turbulence which produces a significant
inhomogeneity of density, as evident in Figure 1. On the other
hand, the pressure gradient is in general along the direction of
gravity being the largest across the ionization front, given the

abrupt temperature differences. This misalignment dictates
the evolution of ~! close to the ionization front.

From dimensional analysis the magnitude of vorticity
squared can be estimated as |~!|2 ⇠ GMBH/r3, where the rel-
evant radius corresponds to the size of the Strömgren sphere.
The number of ionizing photons from the BH is proportional
to the density squared from recombination rate as well as
the recombination volume, Nion / hRsi3n2

1 where hRsi is
the mean size of the Strömgren radius. On the other hand
Nion is also proportional to the Bondi accretion rate, i.e.,
Nion / M2

BH
n1 (Park & Ricotti 2011). Thus, the mean

size of Strömgren sphere is related to the BH mass and gas
density as hRsi3n2

1 / M2

BH
n1. Using this in the estimate

of the mean magnitude of |~!|2, which develops around the
ionization front

|~!|2 ⇠ GMBH

hRsi3
/ n1

MBH

. (12)

Figure 6 shows the time evolution of mass-weighted mean
vorticity squared |~!|2 for the simulation M4N3, calculated
within the radius r = 5.0 (solid line), 10.0 (dashed), and
15.0 pc (dotted). Note that for the run M4N3 the ionization
front extends to a radius of r ⇡ 10 pc, and is a scaled down
version of the ionization front in the simulation with the run
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E(k): Turbulent Kinetic Energy: Typical Kolmogorov
Park, Wise, & Bogdanovic 2017



Turbulence is important?



1D/2D (Park+11,12) 3D (Park+ 17)

Code ZEUS-MP ENZO + Moray

# of energy bins 40-100 4-8

Coordinate
system

Spherical (r, theta)
Cartesian (x,y,z) with 

Adaptive Mesh Refinement

Resolution Highest at rmin
Near the BH & around I-

Front

Gas motion Laminar Laminar + Turbulent

Method for 
accretion rate

Mass flux at rmin Bondi rate inside HII region

Amplitude of 
Mdot

~5-6 orders of mag ~2-3 orders of mag

mean accretion 
rate & period

consistent consistent

Extensibility
Single BH, spherically 

symmetric or 
axisymmetric accretion

Non-spherically symmetric 
accretion, multiple BHs,

Cosmological set-up

1D/2D vs. 3D simulations



Accretion regimes
Mode I, Mode II, super-Eddington

§ Different accretion regimes as 
a function of BH mass & Gas 
density
– Mode I : ~ 1 percent of Bondi

rate, 5-6 orders of difference 
between max/min accretion 
rates

– Mode II : Eddington-limited, 1-2 
orders of mag difference 
between max/min accretion 
rates. 

– super-Eddington : at high MBH and 
nH

• Low accretion rate : only ~1 
percent of Bondi rate

Park, Ricotti, Natarajan, Wise, Bogdanovic (2016)

Eddington-limited



Hyper-accretion regime
Radiative Feedback is not important any more?

Back to Bondi accretion?



Hyper-accretion
Stromgren radius vs. Bondi radius

Inayoshi, Haiman & Ostriker (2016)
Sakurai et al. (2016)

4

inner region

outer region

trapping

Rtr

photosphere

Rph

Bondi radius

RB

BH

tr

ph

B

Figure 2. A schematic picture of a spherically symmetric ac-
cretion flow onto a massive BH at a hyper-Eddington accretion
rate (ṁ ≫ 1). There are three characteristic scales: the Bondi
radius (RB), photosphere (Rph), and the trapping radius (Rtr).
The dashed curve marks the boundary between the two regions
simulated separately: the outer region (10−3 RB ! r ! 10 RB)
and the inner region (0.5 Rtr ! r ! Rph ! 10−3 RB).

states only when ṁ = ṀB/ṀEdd " 3000. For the cases
with ṁ ≫ 1, we run several simulations by setting the gas
properties (i.e. the density, thermal energy density, and ve-
locity) at the inner-boundary of the outer-region simulation
to the outer-boundary conditions of the inner-region simu-
lation. The inner-region simulations are needed to confirm
whether the radiation affects the gas dynamics in the outer
region. Finally, we obtain self-consistent solutions of the ac-
cretion flow onto a BH with hyper-Eddington accretion rates
(ṁ " 3000) by combining the results of the inner and outer
regions. Note that since solutions with ṁ < 3000 do not ap-
proach a steady state due to radiative feedback in the outer
region, we neither conduct the inner-region simulations nor
obtain a fully self-consistent solution in this unstable regime.

2.2 Basic equations

The basic equations of hydrodynamics we solve are the fol-
lowing: the equation of continuity

∂ρ
∂t

+
1
r2

∂
∂r

(r2ρv) = 0, (6)

the equation of motion

ρ

(

∂v
∂t

+ v
∂v
∂r

)

= −∂p
∂r

− ρ
∂Φ
∂r

+ frad, (7)

where ρ is the gas density, v is the radial velocity (inflow;
v < 0), p is the gas pressure, the gravitational potential with
a general relativistic correction is set to Φ = −GMBH/(r −
RSch) (Paczyńsky & Wiita 1980), and frad is the outward
net radiation force in the radial direction.

We solve the energy equation including radiative cooling
and heating,

ρ

(

∂e
∂t

+ v
∂e
∂r

)

= −p
1
r2

∂
∂r

(r2v)− Λ+ Γ, (8)

where e is the specific energy (erg g−1). The equation of state
of the ideal gas is assumed as p = (γ− 1)ρe, where γ = 5/3.
The first term of the right-hand side is the compressional
heating term. The last two terms are radiative cooling and

heating, whose rates are Λ and Γ in units of erg s−1 cm−3.
The cooling rate is estimated as

Λ = ΛH + ΛHe + ΛHe+ + Λff , (9)

where each term corresponds to the cooling rate associated
with H, He, He+ atoms and free-free emission. For the outer-
region simulation, we assume optically thin cooling rates of
H atoms (Lyα, ΛH = Λthin

Lyα), He atoms (11S state) and He+

ions, and free-free transitions (Glover & Jappsen 2007). In
the inner region, since the gas is opaque to Lyα photons,
we solve the level population of H atoms (2S and 2P state)
including the Lyα trapping effect and estimate the cooling
rate of two-photon emission (Omukai 2001). In addition to
the H transitions, free-bound emission of H− (H + e− →
H−+γ) contributes as a cooling process. Thus, for the inner-
region simulation, ΛH = ΛLyα + Λ2ph + ΛH− . We show the
details of our treatment of the Lyα trapping, continuum
radiation cooling, and opacity in the Appendix.

We estimate the cooling rate by solving a chemical reac-
tion network of metal-free gas, which is composed of seven
species (H, H+, e−, H−, He, He+, and He++). Since the
reactions relevant to H− occur faster than the gas dynam-
ical timescale, the H− fraction is assumed to be in equi-
librium (see Appendix A3). The chemical reactions include
photoionization, collisional ionization, radiative recombina-
tion and collisional recombination of H, He and He+. Instead
of considering photoionization by diffuse photons, we adopt
the on-the-spot approximation where the case A radiative
recombination rate coefficient is replaced by that for case
B. To provide a stable, positive definite and first-order ac-
curate solution of the chemical network, we use a method
based on a semi-implicit formulation (Anninos et al. 1997).
The order of the updating is H, H+, He, He+, He++ and e−

(Whalen & Norman 2006). For the inner-region simulation,
inside the photosphere where all reactions are balanced, the
chemical abundances are determined by solving the Saha
equations instead of the non-equilibrium reaction network.

To ensure the accuracy of solutions of the hydrodynam-
ical equations coupled with radiative cooling/heating and
primordial chemistry, the time step must be shorter than
the Courant time (the Courant number is set to 0.5), cool-
ing/heating time tcool and chemical time tchem. The cool-
ing/heating time and chemical reaction time are given by

tcool = 0.1
ρe

|Λ− Γ|
, (10)

tchem = 0.01
xe + 0.001xH

ẋe
, (11)

where xe and xH are the electron and neutral fraction
(Whalen & Norman 2006, 2008). We set the time step to
the lowest value among these timescales.

To solve the above basic equations, we employ spher-
ical coordinates with a logarithmically-spaced grid in the
radial direction: the position of i-th grid is given by ri =
rmin+∆r0(ϵ

i−1 − 1)/(ϵ− 1) for i = [1, N ], where rmin is the
radius of the inner boundary, ∆r0 is the size of the inner-
most grid-cell, ϵ (= ∆ri+1/∆ri) is the size ratio between
consecutive grids, N is the number of grids, and the radius of
the outer boundary rmax is given by rN . In our simulations,
the size and layout of the coordinate grid is characterized by
the four parameters (rmin, rmax, ϵ, and N). The number of

c⃝ 0000 RAS, MNRAS 000, 000–000

Park, Ricotti, Di Matteo, & Reynolds (2014a)



Transition to hyper-accretion regime



3D structure of hyper-accretion flow
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Bulge-driven growth of seed BHs
a possibility for hyper-accretion regime



BH

Bulge can boost accretion?
Accretion Radius

Strömgren Radius

Effective Bondi
Radius 

Due to bulge comp



Effective Bondi radius
increased Bondi radius due to bulgeBulge-driven Growth of Intermediate-mass Black Holes 3

FIG. 2.— Gravitational potential energy � with a bulge component as a function of radius for MBH = 102 M� (left) and MBH = 105 M� (right). The scale
radius a for a given bulge mass is adjusted so that the mass density is fixed within a. The radii are normalized by the BH mass and the gravitational constant
G = 4.3 ⇥ 10�3 pcM�1

� (km/s)2 is used for �. The horizontal dotted lines indicate the gas energy for T = 104 K and 106 K. The intersection of � and the
gas energy is analogous to Bondi radius within which the gravitational energy dominates over the gas energy. Note that the effective Bondi radius as a function
of bulge mass is different for different BH masses.

where �B is the dimensionless accretion rate as a function of
the equation of state (�). The factor �B ranges from e3/2/4
for an isothermal gas (� = 1) to 1/4 for an adiabatic gas (� =
5/3). The Eddington luminosity is defined as the maximum
accretion rate for a BH with MBH considering the radiation
from the BH and expressed as

LEdd = 4⇡GMBHmpc�
�1

T
(2)

where mp is the proton mass, �T is the Thompson cross sec-
tion, and c is the speed of light. The regimes where the Bondi
accretion or Eddington-limited accretion occurs can be found
by comparing ṀB and LEdd/(⌘c2) where ⌘ is the radiative
efficiency. For example, assuming ⌘ = 0.1 and T1 = 104 K
two regimes are separated by MBHnH,1 = 4⇥106 M�cm�3

shown as a solid line at the bottom left corner of Figure 1.

2.2. Radiation-regulated accretion: Mode-I and II
When the radiative feedback from the BH is considered,

the accretion rate is suppressed and the accretion rate shows
a highly oscillatory behavior (Milosavljević et al. 2009; Li
2011; Park & Ricotti 2011, 2012). Park & Ricotti (2012)
also find that two distinct types of oscillations are expected
depending on MBH and nH,1, which are separated by a dot-
dashed line in Figure 1. In Mode I accretion, thermal pres-
sure gradient dominates over the gravity inside the Strömgren
sphere, and bursts of accretion are driven by the collapse of
the neutral gas when the gas inside the Strömgren sphere is
depleted. On the other hand, the oscillation of accretion rate
for Mode II is driven by the density wave from the ionization
front. The switch from Mode-I (strong) oscillation with an
accretion rate of ⇠ 1 percent of Bondi rate to Mode-II (mild)
oscillation with Eddington-limited rate occurs at

MBHn
cr

H,1 ⇠ 5⇥ 108 M� cm�3 (3)

where ncr

H,1 is the critical density for a given BH mass MBH.
The switch from Mode-I to Mode-II is found at higher MBH

and nH,1 compared to the conventional Eddington-limited
Bondi accretion criteria.

The accretion behavior is expected to make another tran-
sition at extremely high density nH,1 a given MBH, where
the oscillatory behavior weakens and the radiative feedback is
no longer able to regulate the gas accretion. This regime can
be considered as super-Eddington (e.g., Ohsuga & Mineshige
2011; Jiang et al. 2014), and the dotted line in Figure 1 is an
approximate estimate by assuming that the Bondi radius rB
is larger than the Strömgren radius (Park et al. 2014a). With
increasing density for a given BH mass (moving upward in
Figure 1) or increasing BH mass for a fixed gas density (mov-
ing to the right in Figure 1), the accretion is expected to make
a transition from the “feedback-dominated” to the “feeding-
dominated” regime (e.g., Pacucci et al. 2015).

2.3. Extended Bondi accretion with a bulge component
We treat the accretion onto a BH surrounded by bulge com-

ponent as an analogue to the Bondi accretion. The gravita-
tional potential of the bulge can be expressed analytically.
Therefore, the classical Bondi problem can be extended to
a generalized spherically symmetric accretion problem. We
adopt the Hernquist (1990) radial profile for the stellar mass
distribution, and the corresponding gravitational potential can
be described by the total bulge mass Mbulge and the scale
length a as

�bulge(r) = �GMbulge

r + a
(4)

where the enclosed mass within the radius r is m(r) =
Mbulger2(r + a)�2. The mean density within the scale ra-
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FIG. 3.— Effective Bondi radius as a function of bulge-to-BH mass ratio �bulge�BH for MBH = 102, 103, 104, 105, and 106 M�. Left panel shows rB,e↵

for cold gas with T1 = 104 K and right panel shows rB,e↵ for hot gas with T1 = 106 K.

dius a is then obtained as

⇢̄⇤ (r < a) =
3m(a)

4⇡a3
=

3Mbulge

16⇡a3
. (5)

For a given bulge mass, we keep the same density within
the scaling radius a by applying a = a0(Mbulge/M�)1/3.
The Milky Way is known to have Mbulge ⇠ 1 ⇥ 1010 M�
with the scale radius aMW ⇠ 800 pc and the DM halo mass
MDM ⇠ 1⇥1012 M� (Dwek et al. 1995; Widrow & Dubinski
2005; Kafle et al. 2014). The average stellar density within the
scale radius for MW is estimated as ⇠ 1M�pc�3. Here we
use a0 = 0.23 pc which corresponds to ⇢̄⇤ ⇠ 5.2M�pc�3.
The ⇢̄⇤ is obviously a free parameter, however note that a0 is
not very sensitive to ⇢̄⇤ since a0 / ⇢̄⇤�1/3 for a given bulge
mass.

We define the effective Bondi radius rB,e↵ as

GMBH

rB,e↵
+

GMbulge

rB,e↵ + a
⌘ c21 (6)

where the left side of the equation is the magnitude of the
gravitational potentials due to the BH and bulge component
together per unit mass whereas the right side represents the
thermal energy of the gas per unit mass. Figure 2 shows
the magnitude of the combined gravitational potential � con-
tributed by the BH and bulge component together. The hori-
zontal dotted lines indicate the specific thermal energy of cold
gas with T1=104 K and hot gas with T1 = 106 K when the
multi-phase model for star-forming gas is considered (McKee
& Ostriker 1977; Springel & Hernquist 2003; Pelupessy et al.
2007). Its intersection with � for different �bulge�BH is the
solution for the effective Bondi radius rB,e↵ . The solution for
the effective radius can be obtained as

rB,e↵

rB
= 0.5⇥


�bulge�BH + 1� a0 +

q
(a0 � 1� �bulge�BH)2 + 4a0

�

(7)

where the radii are normalized by the Bondi radius as
a0 ⌘ a/rB and �bulge�BH is defined as the bulge-to-BH
mass ratio Mbulge/MBH. The ratio rB,e↵/rB approaches
�bulge�BH when �bulge�BH � 1 while rB,e↵/rB = 1 when
�bulge�BH ⌧ 1. Note that the rB,e↵ as a function of
�bulge�BH is different for 102 M� (left panel) and 105 M�
(right panel) BHs.

Figure 3 shows the effective Bondi radius normalized by
the Bondi radius rB,e↵/rB for different BH masses 102, 103,
104, 105, and 106 M�. For cold gas with T1 = 104 K (left
panel), the rB,e↵/rB for the light BHs with MBH = 102 M�
does not increase significantly for �bulge�BH . 103 whereas
rB,e↵/rB for the massive IMBH with MBH & 105 M� mono-
tonically increases with �bulge�BH. It implies that the accre-
tion onto various BH masses is affected differently with the
same �bulge�BH since the gas within rB,e↵ is pulled to the BH
by the enhanced gravitational potential.

2.4. Critical bulge-to-BH ratio �crit
From Figure 3, it is possible to estimate a minimum bulge

mass above which the rB,e↵ is always linearly proportional
�bulge�BH. Here we define �crit above which the rB,e↵ shows
a linear relationship with �bulge�BH for a given BH mass. Fig-
ure 3 shows that �crit ⇠ 104 for 102 M�, �crit ⇠ 103 for
103 M�, and �crit ⇠ 102 for 104 M�. The critical bulge-to-
BH ratio for T1 = 104 K can be expressed for a given BH
mass approximately as

• Bulge : Hernquist (1990) profile
• Gas temperature 
• BH Mass



Effective Bondi Radius as a function of 
bulge-to-BH mass ratio4
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the magnitude of the combined gravitational potential � con-
tributed by the BH and bulge component together. The hori-
zontal dotted lines indicate the specific thermal energy of cold
gas with T1=104 K and hot gas with T1 = 106 K when the
multi-phase model for star-forming gas is considered (McKee
& Ostriker 1977; Springel & Hernquist 2003; Pelupessy et al.
2007). Its intersection with � for different �bulge�BH is the
solution for the effective Bondi radius rB,e↵ . The solution for
the effective radius can be obtained as

rB,e↵

rB
= 0.5⇥


�bulge�BH + 1� a0 +

q
(a0 � 1� �bulge�BH)2 + 4a0

�

(7)

where the radii are normalized by the Bondi radius as
a0 ⌘ a/rB and �bulge�BH is defined as the bulge-to-BH
mass ratio Mbulge/MBH. The ratio rB,e↵/rB approaches
�bulge�BH when �bulge�BH � 1 while rB,e↵/rB = 1 when
�bulge�BH ⌧ 1. Note that the rB,e↵ as a function of
�bulge�BH is different for 102 M� (left panel) and 105 M�
(right panel) BHs.

Figure 3 shows the effective Bondi radius normalized by
the Bondi radius rB,e↵/rB for different BH masses 102, 103,
104, 105, and 106 M�. For cold gas with T1 = 104 K (left
panel), the rB,e↵/rB for the light BHs with MBH = 102 M�
does not increase significantly for �bulge�BH . 103 whereas
rB,e↵/rB for the massive IMBH with MBH & 105 M� mono-
tonically increases with �bulge�BH. It implies that the accre-
tion onto various BH masses is affected differently with the
same �bulge�BH since the gas within rB,e↵ is pulled to the BH
by the enhanced gravitational potential.

2.4. Critical bulge-to-BH ratio �crit
From Figure 3, it is possible to estimate a minimum bulge

mass above which the rB,e↵ is always linearly proportional
�bulge�BH. Here we define �crit above which the rB,e↵ shows
a linear relationship with �bulge�BH for a given BH mass. Fig-
ure 3 shows that �crit ⇠ 104 for 102 M�, �crit ⇠ 103 for
103 M�, and �crit ⇠ 102 for 104 M�. The critical bulge-to-
BH ratio for T1 = 104 K can be expressed for a given BH
mass approximately as

Bulge-driven Growth of Intermediate-mass Black Holes 5

FIG. 4.— Density (top), temperature (middle), and radial velocity (bot-
tom) as a function of radius for simulations without radiative feedback for
MBH = 106 M�, nH,1 = 10 cm�3, T1 = 106 K, and � = 1.2. All
the profiles shown are the steady states for �bulge�BH = 101 (dashed), 102

(dot-dashed) and 103 (dotted). Inflow velocity at large radius increases as
a function of �bulge�BH, however the velocity is at small radius is deter-
mined by the gravitational potential by the BH. The density and temperature
profiles do not change until �bulge�BH . 102, but shows an enhancement
at �bulge�BH = 103 which is consistent with the behavior of rB,e↵ for
T1 = 106 K in Figure 3.

�crit ⇠
106 M�
MBH

(8)

where we can infer that regardless of the BH mass, the rB,e↵

always increases when Mbulge & MBH�crit ⇠ 106 M�.
For hot gas with T1 = 106 K which we adopt as the typi-

cal temperature of the hot component of interstellar medium,
the rB,e↵/rB for various BH mass is shown in the right
panel of Figure 3. Note that the rB,e↵/rB for a given BH
mass for hot gas with Thot matches with the case for lower
BH mass MBH(Tcold/Thot)3/2. For example, the rB,e↵ for
MBH = 106 M� and T1 = 106 K matches with the one for
MBH = 103 M� and T1 = 104 K. This relation can be ex-
tracted from Equation (6) that �bulge�BH / T1M�2/3

BH
when

a � rB,e↵ . Then, the �crit for hot gas is also expected to
scale with temperature as �crit(Thot/Tcold)3/2. Equation (8)

FIG. 5.— Average accretion rates normalized by Bondi rate for simulations
M6N1T4NR for cold gas (T1 = 104 K) shown as squares and M6N1T6NR
for hot gas (T1 = 106 K) shown as triangles (� = 1.2), circles (� =
4/3), and stars (� = 1.4). Average accretion rate increases as a function
of �bulge�BH when �bulge�BH & �crit. Note that �crit ⇠ 1 for cold gas
while �crit ⇠ 103 for hot gas (T1 = 106 K).

can then be generalized as

�crit ⇠
106 M�
MBH

✓
T1
104 K

◆3/2

. (9)

2.5. 1D Radiation-hydrodynamic Simulations
Radiation hydrodynamic simulations are a useful tool to

investigate the complex interplay between accretion flows
and radiative feedback in the modified Bondi problem with
a bulge component. In this section, we describe the numerical
procedures used in our study. We run a set of 1D radiation-
hydrodynamic simulations using ZEUS-MP (Stone & Nor-
man 1992; Hayes et al. 2006) with a radiative transfer equa-
tion solver (Ricotti et al. 2001). We use a spherical coordinate
system with a BH centered at r = 0 applying an operator-
splitting method between hydrodynamic and radiative trans-
fer calculations. At the minimum radius, we use the mass flux
(ṀBH) to define the BH luminosity as Lbh = ⌘ṀBHc2. We
apply a power-law spectrum F⌫ / ⌫�↵ where ↵ is the spec-
tral index for BH radiation in the energy range from 13.6 eV
to 100 keV. Our radiative transfer subroutine calculates photo-
heating, photo-ionization, radiation pressure, and gas cooling.
Compton heating is neglected in this study since the effect is
not significant when the incident spectrum is soft in high ac-
cretion rate regime (Park et al. 2014b).

The basic setup of the current work is similar to the previous
works (Park & Ricotti 2011, 2012), but we add a bulge com-
ponent to the gravitational potential (see section 2.3). Differ-
ent pairs of values for MBH and nH,1 are selected, but we
keep MBHnH,1 = 107 M�cm�3, so that the we can separate
the effect of the bulge on the growth history of different BH

106 Msun

100 Msun

Park, Ricotti, Natarajan, Bogdanovic & Wise (2016)

à Critical BULGE MASS



Accretion rate as a function of bulge-to-BH ratio
with radiative feedback
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TABLE 1
SIMULATION PARAMETERS

MBH nH,1 T1
ID (M�) (cm�3) (K) � Rad Feedback �bulge�BH

M6N1T4NR 106 101 104 1.2 No 0, 101, 102, 103, 104
M6N1T6NR 106 101 106 1.2, 4/3, 1.4 No 0, 101, 102, 103, 104

M2N5 102 105 104 5/3 Yes 0, 30, 102, 3⇥ 102, 103, 3⇥ 103, 104
M4N3 104 103 104 5/3 Yes 0, 30, 102, 3⇥ 102, 103, 3⇥ 103

M6N1 106 101 104 5/3 Yes 0, 10, 20, 40, 102, 2⇥ 102, 4⇥ 102, 8⇥ 102, 103

FIG. 6.— Accretion rates as a function of time for various bulge-to-BH mass ratio �bulge�BH. Dashed lines show the mean accretion rates if the accretion is
oscillatory or asymptotic values otherwise. Top panels show the simulations for M2N5, middle panels show M4N3, and bottom panels show M6N1. For various
�bulge�BH, M2N5 dose not show significant change as a function of �bulge�BH. For M4N3, due to the increased effective Bondi radius rB,e↵ the accretion
rate increases as a function of �bulge�BH when �bulge�BH & 102. For M6N1, the accretion rate increases when �bulge�BH & 1.

seed masses. Simulations with the same value of MBHnH,1
show qualitatively similar results in terms of the accretion rate
normalized by Bondi rate and the period of oscillation when
normalized by MBH. Simulation parameters are listed in Ta-
ble 1. M2N5, M4N3, and M6N1 are simulations with radia-
tive feedback for BHs with 102, 104, and 106 M� and keep-
ing the same MBHnH,1. M6N1T4NR and M6N1T6NR are
simulations without radiative feedback for MBH = 106 M�,
10 cm�3, and T1 = 104 K and 106 K, respectively.

3. RESULTS
3.1. Extended Bondi Accretion without Radiative Feedback
Figure 4 shows the density (top), temperature (middle), and

radial velocity of the gas (bottom) as a function of radius
for simulations M6N1T6NR without radiative feedback with
� = 1.2. The simulations without radiative feedback reach
steady states and the different lines show �bulge�BH = 101

(dashed), 102 (dot-dashed) and 103 (dotted). The density and
temperature profiles do not change until �bulge�BH . 102,
but display an enhancement at �bulge�BH = 103, that is con-
sistent with the behavior of rB,e↵ for T1 = 106 K in Figure 3.

The change of accretion rate with the bulge-to-BH mass ra-
tio can be described as follows. Note that the density profile
is enhanced by the presence of the bulge component while the
velocity near the BH is not altered as shown in Figure 4. Be-
cause the central temperatures remain relatively unchanged,
the accretion rate is boosted by the enhanced densities around
the Bondi radius.

Assuming that the density enhancement is proportional to
(rB,e↵/rB)� , the accretion rate can be expressed as

ṀBH = ṀB

✓
rB,e↵

rB

◆�

. (10)

Since rB,e↵ shows dependence on the BH mass as in Fig-
ure 3, the accretion rate also depends on the BH mass accord-
ingly. The accretion rate is not affected when �bulge�BH 
�crit where rB,e↵ ⇠ rB while it increases following Equa-
tion (10) when �bulge�BH � �crit. Figure 5 shows accretion
rates as a function of �bulge�BH for simulations without ra-
diative feedback listed as M6N1T4NR and M6N1T6NR in
Table 1. We confirm that the accretion rate remains the same
when �bulge�BH  �crit while it increases when �bulge�BH �
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TABLE 1
SIMULATION PARAMETERS

MBH nH,1 T1
ID (M�) (cm�3) (K) � Rad Feedback �bulge�BH

M6N1T4NR 106 101 104 1.2 No 0, 101, 102, 103, 104
M6N1T6NR 106 101 106 1.2, 4/3, 1.4 No 0, 101, 102, 103, 104

M2N5 102 105 104 5/3 Yes 0, 30, 102, 3⇥ 102, 103, 3⇥ 103, 104
M4N3 104 103 104 5/3 Yes 0, 30, 102, 3⇥ 102, 103, 3⇥ 103

M6N1 106 101 104 5/3 Yes 0, 10, 20, 40, 102, 2⇥ 102, 4⇥ 102, 8⇥ 102, 103

FIG. 6.— Accretion rates as a function of time for various bulge-to-BH mass ratio �bulge�BH. Dashed lines show the mean accretion rates if the accretion is
oscillatory or asymptotic values otherwise. Top panels show the simulations for M2N5, middle panels show M4N3, and bottom panels show M6N1. For various
�bulge�BH, M2N5 dose not show significant change as a function of �bulge�BH. For M4N3, due to the increased effective Bondi radius rB,e↵ the accretion
rate increases as a function of �bulge�BH when �bulge�BH & 102. For M6N1, the accretion rate increases when �bulge�BH & 1.

3.1. Generalized Bondi Accretion without Radiative

Feedback

Figure 4 shows the density (top), temperature (middle), and
radial velocity of the gas (bottom) as a function of radius
for simulations M6N1T6NR without radiative feedback with
� = 1.2 and MBH = 106 M� accreting from a gas with tem-
perature T = 106 K. The radial profiles have reached steady
state accretion and the different colored lines (see legend) re-
fer to different bulge masses: �bulge�BH = 101, 102 and 103

(i.e., Mbulge = 107, 108, 109 M�). The density and tempera-
ture profiles do not change until Mbulge . 108, but display
an enhancement at Mbulge = 109, that is consistent with
Mbulge,crit in Equation (9) for T1 = 106 K and with Fig-
ure 3.

The change of accretion rate observed when Mbulge >
Mbulge,crit for the simulation without radiation feedback ap-
pears to be dominated by an increase of the density produced
by the presence of the bulge component. While the velocity
near the BH is not altered as shown in Figure 4. The central
temperature rises mildly, reducing by the same magnitude the
Bondi radius. Therefore the dominant effect increasing the

accretion rate is the enhanced densities near the Bondi radius
of the BH.

We find that the accretion rate is ṀB if Mbulge 
Mbulge,crit and increases as

ṀBH ⇠ ṀB

Mbulge

Mbulge,crit

, (10)

for Mbulge > Mbulge,crit. Figure 5 shows accretion rates
as a function of the bulge mass for a set of simulations of
106 M� BHs without radiative feedback but with different �,
temperature of the gas, and density of the bulge (see simula-
tions M6N1T4NR and M6N1T6NR in Table 1). We find that
Equation (10) and Equation (9) describe accurately the accre-
tion rate from the simulations: the accretion rate remains con-
stant when Mbulge  Mbulge,crit (�bulge�BH  �crit) while
it increases linearly with Mbulge for Mbulge > Mbulge,crit

(�bulge�BH > �crit). As mentioned in section 2.3, simulations
with ⇢̄⇤ ⇠ 1M�pc�3) do not show a significant difference
since the bulge scale length a is not very sensitive to ⇢̄⇤.

3.2. Generalized Bondi Accretion with Radiative Feedback

Park, Ricotti, Natarajan, Bogdanovic & Wise (2016)
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Figure 10. Same format as Fig. 5 but for star-forming galaxies. The black solid line indicates the fitting of all galaxies as in Fig. 5, rather
than the fitting of star-forming galaxies.

Figure 11. Same format as Fig. 8 but for star-forming galaxies.
The solid horizontal line indicates the best-fit intercept in Fig. 4.
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BH GROWTH IS MAINLY LINKED 
TO HOST-GALAXY STELLAR 
MASS RATHER THAN STAR 
FORMATION RATE !!



Summary 

• Radiative feedback from BHs efficiently suppresses
accretion rate onto BHs (~1% of Bondi rate) and 
accretion rate shows highly oscillatory behavior.

• Hyper-accretion is a mechanism that can explain 
the rapid growth of seed BHs in the early universe. 
Build-up of stellar bulge component may enhance 
accretion rates onto heavy seeds.  


